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Abstract

Introducing automated formal methods for large industrial real-time systems is an impor-

tant research challenge. We propose timed process automata for modeling and analysis

of time-critical systems which can be open, hierarchical, and dynamic. The model of-

fers two essential features for large industrial systems: (i) compositional modeling with

reusable designs for different contexts, and (ii) automated state-space reduction technique.

Timed process automata model dynamic networks of continuous-time communicating con-

trol processes which can activate other processes. We show how to automatically establish

safety and reachability properties of timed process automata by reduction to solving timed

games. To mitigate the state-space explosion problem, an automated state-space reduction

technique using compositional reasoning and aggressive abstractions is also proposed. Be-

fore working on timed process automata, we did a survey on semantics, decision problems,

variants, and tools of timed automata. The insights gained from this survey motivated us to

use timed game theory and Uppaal Tiga in a couple of industrial case studies and the devel-

opment of timed process automata. Both the case studies show that state-space explosion

is a severe problem for timed games. Suitable abstractions, however, dramatically improve

the scalability of timed games in one case study. These case studies motivate the devel-

opment of timed process automata and an automatable state-space reduction technique for

them based on aggressive abstraction.
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1

Chapter 1

Introduction

Automata are a prominent group of models in model-based development because they facil-

itate many important types of formal analyses. Finite automata (and their derived models,

such as Kripke structures [159]) can be considered as the most popular, studied, and applied

automata because of their rich theoretical properties and practicability. Properties of some

systems, however, do not depend only on exact sequence of actions (or communication) but

also the exact time of execution. Finite automata, implicitly, can model time information

using sample timed data. For example, an action a that executes n seconds after the previ-

ous action b can be modeled as n special time tick symbols followed by a. Such implicit

modeling of time can result in an exponential blowup of both input data and the size of the

model. To avoid this problem, this thesis uses timed automata (TA) [14, 15], which can

be viewed as finite automata with continuous clocks to record time. Timed automata are

used over other real-time formal models (such as timed Petri nets [206], timed transition

systems [197], and Modecharts ) because real-time reachability and some other important

analytical properties were first solved using symbolic semantics region graph of TA and

after that other models adopt the same approach.
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This thesis proposes the first compositional modeling with reuse and automatable-state-

space reduction technique for the formal analysis of dynamic hierarchical open real-time

systems. Dense-time model TA do not support compositional modeling with reuse and

automatable-analysis for large dynamic hierarchical open systems. More precisely, timed

automata are not suitable for modeling and analyzing industrial dynamic hierarchical open

systems. This dissertation explores timed automata and its variants in the literature, applies

these dense-time models in a couple of industrial problems, and proposes a novel vari-

ant timed automata together with a state-space reduction technique for the compositional

modeling and analysis of dynamic hierarchical open real-time systems.

Timed automata are desirable for the development of open real-time systems since

timed automata can capture both discrete-time controllable behaviors of the system and

dense-time uncontrollable behaviors of the environment. Timed automata have no struc-

tured support for modeling dynamic hierarchical open systems. This absence may lead

to cumbersome design details in a large-scale system having several control hierarchies.

Timed game automata [190, 137, 95]—a variant of timed automata—are a well-known

model in the research community for the analysis of open dense-time systems. Dense-time

formal methods of timed automata may provide the most accurate analysis, however timed

automata, currently, are not suited for open systems in practice mainly because of poor

scalability.

A system with which an uncontrollable and unknown environment may continuously

interact is an open system. A hierarchical open system is an open system whose compo-

nents may be other smaller open systems, which also can be hierarchical open systems. A

dynamic hierarchical open system is a hierarchical open system whose components change

over time. A ground hierarchical open system is a hierarchical (open) system that does
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not have a component. A non-ground hierarchical open system is a compound hierarchical

open system. A ground hierarchical open system has a control hierarchy of depth 0. A com-

pound hierarchical open system system1 has a control hierarchy of depth n + 1, where n is

the maximum of depths of the control hierarchies of the components contained in system1.

Many hierarchical open systems have dynamic behaviors, which are activated components

only when needed. Dynamic behaviors are an important feature when resource constraints

(such as limited memory) do not allow one to keep all the components active at the same

time. Models of industrial dynamic hierarchical open systems can be very detailed because

of the hierarchical compositionalability. These details may introduce errors in the design

and make automated analysis challenging.

1.1 Motivation

The first goal of this thesis is to develop an automatable synthesis technique for recon-

figuration services for cost-effective fault tolerance. The next goal is to develop a timed

automata-based modeling paradigm for dynamic hierarchical open systems, where a de-

signer will not need to readjust a design for different compositions. However, the main

motivation behind this thesis is to develop an automatable state-space reduction technique

for timed automata-based analysis of dynamic hierarchical open systems.

1.1.1 Automated Formal Synthesis of Reconfiguration Techniques

Industrial multi-core systems typically use additional processing cores to provide fault-

tolerance. Task-level reconfiguration techniques reduce the number of these additional

processing cores—thus reducing costs—by reallocating the loads of the failed cores to the

non-additional operational cores. The main challenge for developing a task reconfiguration
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technique is to provide formal guarantee that the developed technique or framework can

handle all fault scenarios. Automated formal synthesis of such reconfiguration frameworks

is highly desirable for industrial use.

1.1.2 Three Representations of the Same Component

Figure 1.1: A brake actuator as an independent system

Figure 1.2: A brake actuator as a single copy of a dynamic subsystem

Figure 1.3: Two brake actuators as two copies of a dynamic subsystem

This thesis considers three different kinds of representations of the same component in

timed I/O automata-based compositional modeling:
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• An independent system.

– For example, a brake actuator is represented as an independent system in Fig-

ure 1.1.

• Single copy of a dynamic subsystem.

– Figure 1.2, for instance, presents the same brake actuator of Figure 1.1 as a

dynamic subsystem by adding additional edges.

• Multiple copies of a dynamic subsystem.

– Figure 1.3, for example, presents two copies of the same brake actuator of Fig-

ure 1.2 as two dynamic subsystem obtained by renaming.

These three manual alterations cause poor reuse and may introduce errors in large industrial

designs. For all three scenarios, the thesis aims for only one representation.

1.1.3 State-Space Explosion in Timed Game-Based Analysis: A Case Study

The size of the (monolithic) analysis model of hierarchical systems is exponential in the

depth of the hierarchy, due to a product construction and linear in the product of the sizes

of all included callee processes. No prior work has been done to improve the scalability

of timed games-based analysis of dynamic hierarchical open systems. A generalized auto-

mated reduction technique is a necessity for timed games-based analysis of large dynamic

hierarchical open systems.

The use of timed automata for the analysis of a real-time control problems in the context

of one of our industrial projects failed (even with simplified assumptions) because of the

severity of state-space explosion in timed game-based analysis. The goal of the project
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was to perform a schedulability analysis of a fault tolerant system using timed games. The

effort lasted for around four months. Most of the time was spent to understand the system,

the fault model, and the other assumptions.

A symmetric multi-core processing (SMP) system has two or more concurrent process-

ing cores, where all the cores are identical. An SMP system periodically executes a finite

set of tasks. The worst-case execution time, the deadline, and the release period of every

task are known in a fault-free SMP system. The worst-case execution time of a task is not

larger than its deadline, and the deadline of a task is equal to its release period. Tasks have

priorities.

A fault-free task has three states: suspend, ready, and running. Execution time of a task

increases only when the task is in its running state meaning a core is allocated for that task.

The deadline of a task decreases in non-suspended states. Every task periodically enters

into its ready state at its release period with a constant deadline and zero execution time.

No core is allocated to a ready task. A ready task enters into its running state whenever that

task starts to execute. A core is occupied by a running task. A running task reenters into its

ready state whenever that task is preempted by the scheduler. A running task enters into its

suspended state whenever that task terminates. No core is allocated to a suspended task.

We assume that an SMP system can be affected by at most one fault at a time, a fault

can occur only at discrete time units, and every fault is permanent. The system is fault-free

in its initial system-state. In the other system-states, the system might suffer three types

of faults: safety violations by tasks, runaway tasks, and core failures. Tasks may breach

safety constraints, for instance, illegal memory access. The scheduler kills and blacklists a

task whenever that task violates a safety constraint. A blacklisted task never reenters into

suspended, ready, or running state. A task may run away or hang for forever. A runaway
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task does not reenter into its suspended state. The scheduler is unable to detect runaway

tasks but instantly detects a core failure. Every core of the system may fail, and a task

cannot execute on a failed core.

The scheduler ensures that no core is allocated to a task if a higher priority task is in

its ready state. The scheduler can preempt a task only at discrete time units. A system is

schedulable if and only if no task reaches its deadline before its worst-case execution time.

Figure 1.4: A system represented as a timed game automaton in Uppaal Tiga to perform
schedulability analysis of the system

We intended to use timed game-based analysis to check schedulability of fault-tolerant
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SMP systems. A real-time control problem can be viewed as a two-player timed game

[190, 29, 100] between the controller and the environment, where the controller aims to

find a strategy to guarantee that the system will satisfy a given property, no matter what

the environment does [94]. The purpose of such formulation is to find a strategy for the

scheduler to prevent every task to reach its deadline before its worst-case execution time.

For illustration, we pick an SMP system having the following configuration:

• Twelve tasks T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, and T12

• Total priority T1> T4> T7>T10>T2>T5>T8>T11>T3>T6>T9>T12

• Different WCETs’ W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, and W12

for tasks T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, and T12, respectively

• Three release periods or deadlines D1 (for tasks T1, T4, T7, T10), D2 (for tasks T2,

T5, T8, T11), and D3 (for tasks T3, T6, T9, T12 )

• Four symmetric processing cores

We eliminated safety violations of tasks because this type of error does not have any neg-

ative impact on the schedulability; instead it makes the system more schedulable for the

controller because the scheduler kills and blacklists such tasks. Figure 1.4 presents a model

of the system as a timed game automaton in Uppaal Tiga. The model is constructed in a

way that the controller cannot make location BAD in the model unreachable when the sys-

tem is not schedulable. In more specific words, we check the existence of a strategy for

the controller in the timed game such that no task reaches its deadline before its worst-case

execution time, where the existence means the system is schedulable. Uppaal Tiga, un-

fortunately, could not perform the analysis because of state-space explosion. To avoid the
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Figure 1.5: The same system of Figure 1.4 with eight tasks and two deadlines

explosion, we remove different resources one by one from the system to find the maximal

resources with which the schedulability analysis can be performed. The system can be an-

alyzed with eight tasks (T1, T2, T4, T5, T7, T8, T10, T11) and two deadlines (D1 and D2).

Figure 1.5 presents the model of the system with that reduced configuration.

1.2 Problem Statement

The problem we address is to develop an automatable synthesis technique for reconfigu-

ration frameworks using timed automata, and develop a theoretical foundation for timed

automata 1) to allow compositional modeling with reuse for dynamic hierarchical open

systems and 2) to allow timed games-based automatable analysis for large dynamic hierar-

chical open systems.
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1.3 Challenges

The challenges for the work are the following:

• For automatable synthesis of reconfiguration frameworks using timed (game) au-

tomata:

– Timed games-based synthesis has poor scalability, which has to be taken care

of.

• For automatable reuse in compositional modeling:

– A structured model for timed games is required in which the representation

of an independent system can systematically be changed to a component of a

larger system.

– A structured model for timed games is required where an automatable renam-

ing technique can be developed to construct n copies of component C of system

system1 (such as C1,C2, · · ·Cn) in a way that these new copies can communi-

cate with the other components of system1 and the environment.

• For automatable analysis:

– The main challenge for automated analysis based on timed games is scalabil-

ity. For hierarchical compositional systems, the size of the composition in the

monolithic analysis is exponential in the depth of the hierarchy of the system

due to the product construction of the state space. Therefore, an automatable

state-space reduction technique is needed which can keep the number of con-

trol hierarchies constant in the analysis while maintaining enough precision to
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obtain useful analysis results, irrespective of depth of the control hierarchies in

the actual system.

– The state space in the analysis is also linear in the product of the sizes of all

included components of the system. The components of industrial hierarchical

systems, unfortunately, typically are very detailed. Therefore, an state-space

reduction technique is needed which can keep the size of components constant

and small during the analysis while maintaining enough precision to obtain

useful analysis results—irrespective of the size of the components.

– Moreover, a well-defined modeling structure for timed games is required to

apply an automated state-space reduction technique to analyze time-critical dy-

namic hierarchical open systems.

1.4 Scope

This dissertation develops a service-based task-level reconfiguration techniques for mixed-

criticality multi-core systems within the following scope:

• Engineers of our industrial collaborator aimed to develop service-based solution for

task-level reconfigurations to achieve fault tolerance for mixed-criticality multi-core

systems. However, they were struggling to provide formal guarantee that the pro-

posed services ensure fault tolerance. This dissertation synthesizes these services

with formal assurance to solve their problem. Moreover, this sysntheis process can

be automated.

This dissertation also proposes a variant of timed automata for large dynamic hierarchical

open systems within the following scope:
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• Theoretically, the new variant is not more expressive than the class of timed game

automata. For instance, on the semantic level it uses timed games for the analysis.

However, the variant allows automatable analysis of larger dynamic hierarchical open

systems.

• The thesis also identifies the modeling concepts required for expressing hierarchy

and dynamism. In traditional models, these elements grow with the number of layers

and make the model complicated and error-prone. The new variant is more suitable

for expressing these kinds of systems through the use of new constructs.

• By using existing timed game solvers, the new model allows automated controlled

safety and reachability analysis of arbitrary number of dynamic processes; but there

is an implicit bound on the maximal number of active processes at a time.

• The thesis develops an efficient automatable state-space reduction technique for the

proposed model.

1.5 Contributions

The proposed research aims to improve on the current state-of-the-art in model-based

dense-time controllability analysis by developing a semantic model based on timed au-

tomata that addresses the limitations stated in Section 1.1. More specifically, the contribu-

tions of the proposed research are seven-fold:

Chapter 2 A comprehensive survey of timed automata.

Chapter 3 A novel automatable synthesis technique for reconfiguration services that as-

sures fault tolerance of mixed-criticality multi-core systems.
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Section 3.5 Results of experiments provide evidence of the usefulness of aggressive ab-

stractions for state-space reduction.

Section 4.3 A timed automata variant called timed process automata that provides compo-

sitionality with reuse feature to model dynamic hierarchical open systems.

Section 4.4 An automated dense-time controllability analysis technique for the developed

model.

Section 4.5 An automatable state-space reduction technique for the developed automated

controllability analysis, which will allow the analyses of larger dynamic hierarchical

open systems.

Section 4.6 Results of experiments to determine effectiveness of the developed state-space

reduction technique. The result provides evidence of the usefulness of the technique.

1.6 Organization

The structure of the rest of the dissertation is the following:

• Chapter 2 presents a survey on semantics, closure properties, decision problems,

variants, and tools of timed automata. The chapter shows that modeling techniques,

automated analyses, and other key issues of timed automata are mostly addressed for

static closed systems. The survey also reveals that the uses and application domains

of timed automata are growing.

• Chapter 3 describes one of our industrial projects. In this case study, we use timed
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game automata to automatically synthesize task-level reconfiguration services to re-

duce the number of processing cores and decrease the cost without weakening fault-

tolerance. We apply aggressive abstractions to develop a manual and ad-hoc state-

space reduction technique. The technique shows that aggressive abstractions can

dramatically improve the scalability of timed games-based tools.

• Chapter 4 proposes timed process automata for modeling and analysis of time-critical

systems which can be open, hierarchical, and dynamic. The model offers: (i) compo-

sitional modeling with reusable designs for different contexts, and (ii) automatable

state-space reduction technique. The use of timed process automata and the reduction

technique are described using the case study of the previous chapter.

• Chapter 5 concludes the dissertation.
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Chapter 2

State-of-the-Art in Timed Automata: A Survey

Timed automata [14, 15] were introduced by Alur and Dill in the early 1990s. Since then,

timed automata have become one of the most dominant formal models to support model

driven development (MDD) research of real-time systems. A real-time transition system of

a timed automaton can be arbitrarily large due to its ability to express dense time. A real-

time transition system can be converted into an equivalent finitely large symbolic transition

system called a region graph, where reachability is decidable. Later on, zone graphs were

developed and evolved to provide better scalability in practice compared to region graphs.

Decidability of reachability is a core requirement for automated formal verification, and

this property of timed automata plays the foremost role to establish timed automata as a

major real-time formal model. Rich closure properties and decidability of many important

decision problems have contributed to the adaptation of timed automata in many research

problems of real-time systems.

During the first two decades of timed automata, many kinds of generalizations and

variants of timed automata were proposed and studied to address practically all aspects and

features of real-time systems. The strong foundation of timed automata has inspired the

emergence of a huge number of tools for analysis, controller synthesis, and code synthesis
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for timed automata. This chapter is an attempt to provide an organized description of the

development of timed automata and their variants from theory to practice during the first

two decades after the birth of timed automata.

This chapter presents a compact discussion on syntax, operational semantics, and two

major symbolic semantics, named region and zone, of timed automata. The chapter de-

scribes different kinds of analysis techniques such as region-based, zone-based, and flattening-

based techniques. Main decision problems and closure properties for timed automata are

also listed in this chapter. This chapter classifies around eighty variants of timed automata

in an effort to determine current developments. It uses analysis techniques, formal prop-

erties, and decision problems to draw distinctions between different versions. Finally, the

chapter identifies and classifies forty tools, which are based on timed automata.

This chapter includes only those theorems which are important to describe the works

surveyed. The chapter does not provide any proofs or proof sketches. The remainder of the

chapter is organized as follows: Section 2.1 discusses the syntax of timed automata, while

Section 2.2 explains the operational and symbolic semantics of timed automata. Section 2.3

presents formal linguistic aspects of timed automata. Section 2.4 enumerates variants of

timed automata and then classifies them into twelve classes. Section 2.5 presents several

academic tools which are based on timed automata.

2.1 Syntax

A timed automaton is a finite state automaton with a set of asynchronous nonnegative

real valued clocks and a set of clock constraints. If a timed automaton is considered as a

directed graph, locations represent the vertices of the graph, and locations are connected

by edges. Locations of a timed automaton are graphically represented as circles. A clock
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Figure 2.1: A timed automaton with 2 clocks [8]

valuation over the set of clocks is a mapping which assigns to each clock a nonnegative real

value. An initial clock valuation maps each clock of a timed automaton to zero. The clock

constraint which is associated with a location is called the local invariant1 of that location.

Control can stay in a location only if the clock valuation satisfies the local invariant of

that location. Local invariants are used to ensure the progress of the model [140], that is,

control can stay in a location until its local invariant permits. Instead of local invariants,

Büchi or Muller acceptance conditions can be used to enforce progress [14, 15]. An edge in

a timed automaton is associated with a clock constraint, a subset of the clocks, and a label.

The clock constraint which is associated with an edge is called the guard of that edge. An

edge can be traversed only if the clock valuation satisfies the guard of that edge. Clock

constraints are used to restrict the timing behaviors of the automaton. Each associated

clock of an edge is reset to 0 when the edge traverses. At any instant, the value of a clock

equals the time elapsed since the last time it was reset. While edges are instantaneous, time

can elapse in a location. Consider the timed automaton [8] in Figure 2.1 with two clocks

x and y. The clock x is set to 0 each time the system traverses from l0 to l1 on symbol a.

The local invariant x < 1 associated with the locations l1 and l2 ensures that the c-labeled

edge from l2 to l3 happens within one time unit of the occurrence of a. Resetting clock y

together with the b-labeled edge from l1 to l2 and the guard of the d-labeled edge from l3

1A timed automaton with local invariants is called a safety timed automaton [140].
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to l0 ensures that the delay between b and the following d is always greater than two time

units.

Definition 1. A timed automaton A is a tuple 〈L, L0, LF ,Σ,C, E, I〉, where L is a finite set

of locations, L0 ⊆ L is the set of initial locations, LF ⊆ L is the set of final locations, Σ is a

finite alphabet, C is a finite set of nonnegative real valued clocks, E ∈ L×Φ(C)× (Σ∪{ε})×

2C × L is the set of edges, and I : L −→ Φ(C) is a mapping that assigns local invariants to

locations.

The set Φ(C) of clock constraints δ is defined inductively by δ := x ∼ q | x − y ∼ q |

¬δ | δ1 ∧ δ2 | true and q ∈ Q, ∼∈ {=, <, >,≤,≥}, elements of the alphabet Σ are observable

actions, ε represents unobservable actions, and the set of clocks C is ranged over by x, y

etc. The above stated clock constraints only allow one to compare a clock or the difference

of two clocks with a rational constant. Clock constraints of the form of x− y ∼ q are called

diagonal clock constraints or difference clock constraints. A timed automaton without

diagonal clock constraints is called a diagonal-free timed automata [50]. A k-bounded

clock constraint is a clock constraint which involves only constants between −k and k.

An edge e = 〈l, a, φ, γ, l′〉 ∈ E from location l to l′ can occur and reset the set of

clocks γ ∈ 2C on symbol a if the current clock valuation ν satisfies the guard φ, which is

noted as ν � φ. Only the clock constraints which are downwards closed2 are used as local

invariants because a local invariant merely asserts maximum how long control can stay in

the associated location.
2A clock constraint in the form x � n or x − y � n is downwards closed, where �∈ {<,≤} and n is a

nonnegative integer.
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2.2 Semantics

This section first describes the operational semantics, which could be arbitrarily large for

a timed automaton. After that the section describes finite symbolic representations of the

semantics of timed automata.

2.2.1 Operational Semantics

A timed transition system is a tuple 〈S , S0, SF ,Σ,→〉, where S is a set of states, S0 ⊆ S is a

set of initial states, SF ⊆ S is a set of final states, Σ is an alphabet, and→⊆ S × (Σ ∪ {ε} ∪

R≥0) × S is a transition relation.

Definition 2. The semantics of a timed automaton A = 〈L, L0, LF ,Σ,C, E, I〉 is defined by

associating a timed transition system TS(A) of the same alphabet with A [14, 15]: a state

in TS(A) is expressed as a pair 〈l, ν〉 such that location l ∈ L and ν is a clock valuation

that satisfies the local invariant I(l). A state 〈l, ν〉 is the initial state S0 if and only if l is

an initial location (l ∈ L0) and ν is the initial clock valuation ν0. Similarly, a state 〈l, ν〉

is a final state if and only if l is a final location (l ∈ LF). TS(A) can have two types of

transitions:

Action transition: 〈l, ν〉
a
−→ 〈l′, ν[γ := 0]〉 for an edge 〈l, a, φ, γ, l′〉 if ν � φ, where a ∈

{Σ ∪ {ε}}, γ ∈ 2C and ν[γ := 0] denotes a clock valuation that differs from ν only in

that clocks in set γ, which have been reset to 0.

Time transition: 〈l, ν〉
τ
−→ (l, ν + τ) if (ν + τ′) � I(l) for ∀τ′ : 0 ≤ τ′ ≤ τ, where τ ∈ R+.

Due to the real-value time transitions, the state-space of the timed transition system of a

timed automaton could be arbitrarily large.
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A timed action is a pair (t, a), where action a ∈ (Σ∪{ε}) is taken by a timed automaton A

after t ∈ R+ time units since A has been started. The absolute time t is called a time-stamp

of the action a. A timed word is a sequence of timed actions ξ = (t1, a1)(t2, a2)...(ti, ai)

where ti ≤ ti+1 for ∀i : i ≥ 1. A run of A in TS(A) with initial state 〈l0, ν0〉 over the timed

word ξ = (t1, a1)(t2, a2)...(ti, ai) is a sequence of transitions:

〈l0, ν0〉
t1
−→ 〈l0, ν

′
0〉

a1
−→ 〈l1, ν1〉

t2−t1
−−−→ 〈l1, ν

′
1〉

a2
−→ 〈l2, ν2〉...

ai
−→ 〈li, νi〉

A run is accepting if and only if 〈li, νi〉 is a final state. The timed language Σ∗t over Σ

is the set of all timed words over Σ. The generated timed language Lgt(A) ⊆ Σ∗t is the

set of all timed words for which there exists a run of timed automata A. The set of all

timed words with an accepting run of a timed automaton A is the accepted timed language

Lt(A) ⊆ Lgt(A) by A. The untimed language Lu is the set of all words in the form a1a2a3...

for which there exists a timed word ξ = (t1, a1)(t2, a2)...(ti, ai) ∈ Σ∗t .

2.2.2 Symbolic Semantics

Exhaustive verification via state-space exploration is not possible on an arbitrarily large

state-space. In the last two decades, researchers have made many attempts to convert this

arbitrarily largestate space into an abstract state space with a finite, tractable number of

states such that the new coarser state space preserves all the important verification proper-

ties of the original state-space.

An arbitrarily large state space of a timed transition system TS(A) can be converted

into an equivalent finite state-space of a symbolic transition system called a region graph

R(A) [10, 14, 15]. The decidability results e.g., reachability analysis, untimed language

inclusion, language emptiness, etc. in timed automata are based on symbolic state-spaces.

A region, a state of a region graph R(A), is a pair 〈l, r〉; where l is a location and r is a set
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(a) Clock regions (b) 6 intersections

(c) 14 lines (d) 8 spaces

Figure 2.2: All the 28 clock regions in Figure 2.2(a) for the timed automaton of Figure 2.1:
6 intersections, 14 lines, and 8 spaces

of clock valuations known as a clock region. The integral part of a clock value is important

to decide whether or not a specific clock constraint is satisfied, while the ordering of the

fractional parts is needed to decide which clock will change its integral part first. Two

clock valuations ν and µ are in the same clock region, denoted ν ≈R µ, if for any clock

x1 these clock valuations have equal integral part, and for all clocks these clock valuations

preserve the order of the fractional parts. If the number of clocks |C| is fixed and each clock



www.manaraa.com

2.2. SEMANTICS 22

x ∈ C has a maximal constant mx, the number of clock regions is finite: the number of clock

regions can be at most |C|!·4|C|·
∏

x∈C(mx +1) [15]. All clock regions for the timed automaton

of Figure 2.1 are shown in Figure 2.2. If ν ≈R µ then 〈l, ν〉 and 〈l, µ〉 are untimed bisimilar

(or bisimilar w.r.t. Lu(A)) for ∀l : l ∈ L [15]. As a consequence, untimed bisimulation is

used to construct region graphs.

The first attempt to construct region graphs was made on diagonal-free timed automata.

Diagonal clock constraints are necessary to model many applications such as scheduling

problems [122]. It was shown that a timed automaton A with difference clock constraints

can be converted into an equivalent timed automaton A′ which has no difference clock

constraints [50]. This conversion is based on a region construction. The size of the trans-

formed model is exponential in the number of diagonal clock constraints. The number of

clock regions in R(A) grows exponentially with the number of clocks and the size of max-

imal constants in the clock constraints. Many techniques for the minimization of region

automata have been proposed [11, 140, 226]. None of these proposed techniques has been

successful in practice.

Figure 2.3: Zone graph for the automaton of Figure 2.1 with only 5 zones

A practical efficient abstract state space of a timed automaton A is given by its zone

graphZ(A) [106]. A zone 〈l, [δ]〉 is a pair of a location l and a clock zone [δ], which is the
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maximal set of clock valuations satisfying δ ∈ Φ(C). If a timed automaton has n clocks,

then its clock zones are convex sets in n-dimensional euclidean space. Every clock region

is a clock zone [205]. If the addition of two clock regions (or clock zones) is a convex set

then the addition is a clock zone [205]. The number of clock zones is the number of convex

unions of clock regions [215]. In the worst case, this number is exponential in the number

of clock regions. In practice, clock zones are coarser and more compact than clock regions

(e.g., the timed automaton of Figure 2.1 has 28 clock regions as shown in Figure 2.2, while

it has only five clock zones as shown in Figure 2.3). Zones have been used to implement

all the major timed automata-based tools (e.g., Uppaal [36], Kronos [98]).

For a timed automaton A = 〈L, L0, LF ,Σ,C, E, I〉, its zone graph Z(A) is a transition

system: states of Z(A) are zones of A, the zone 〈l0, [C = 0]〉 is the initial state of Z(A)

(where l0 ∈ L0 and C = 0 means that the value of any clock in C is 0), and for every edge

e = 〈l, a, φ, γ, l′〉 ∈ E and every zone 〈l, [δ]〉 there is a transition 〈〈l, [δ]〉, a, succe(〈l, [δ]〉)〉;

where succe is a successor function which returns all the zones which can be reached from

the zone 〈l, [δ]〉 by first performing the edge e, then letting time pass in the new location,

while continuously satisfying the local invariant. The successor function succe and reacha-

bility analysis in a zone graph are possible because clock zones are closed under the three

operations [δ1] ∧ [δ2], [δ]⇑,τ, and [δ][γ := 0] where [δ1] ∧ [δ2] denotes the intersection of

[δ1] and [δ2], [δ]⇑,τ denotes the set of interpretations for ν + τ for ν ∈ [δ] and τ ∈ R+, and

[δ][γ := 0] denotes the set of clock valuations ν[γ := 0] for ν ∈ [δ] and γ ∈ C.

A clock zone [δ] is closed under entailment when δ cannot be strengthened3 without

reducing the solution set. A canonical zone graph Z(A) means that for every [δ] ∈ Z(A),

there is a unique clock zone [δ′] (where δ′ ∈ Φ(C)) such that [δ] and [δ′] have exactly

3Let δ1 = δ ∧ x � n1 and δ2 = δ ∧ x � n2 are two clock constraints such that δ1 and δ2 have the same
solution set and n1 > n2, then δ1 can be strengthened by replacing n1 by n2 in δ1.
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the same solution set and [δ′] is closed under entailment. Clock zones of a canonical

zone graph are represented and manipulated in a data structure called difference bounded

matrices (DBM) [41, 44, 106], which is the major structure for the efficient implementation

of real-time state-space exploration using symbolic semantics.

2.3 Timed Regular Languages and the Decision Problems

A language L ⊆ Σ∗t is a timed regular language when there exists a timed automaton A such

that L = Lt(A). An untimed language of a timed regular language is a regular language

[15]. Timed regular expressions [27] can be used to represent timed regular languages

and operations on them. Some variants [68, 108] of timed regular expressions exist in the

literature. In MDD, closure properties and decision problems are crucial for modeling, op-

erations on models, and formal analyses. For example, the underlying languages need to be

closed under intersection and shuffle to model a concurrent system using a synchronous and

interleaving semantics, while emptiness checking is used to detect the violation of safety

properties (“nothing bad will happen”) in a model. Timed regular languages are closed

under union [14, 15], intersection [14, 15], concatenation [27], projection [14], renaming

[14], and Kleene-star [27]. Timed regular languages are not closed under complementa-

tion [14, 15] and shuffle [109, 124].

The emptiness checking problem for timed automata is PSPACE-complete and can be

solved in time O(|E|·|C|!·4|C|·(m·m′+1)|C|), where m is the largest numerator in the constants

in the clock constraints and m′ is the least-common-multiple of the denominators of all the

constants in the clock constraints [15, 20]. Minimum-time reachability4 for timed automata

is PSPACE-hard [28, 90, 195]. Timed bisimulation [12, 83, 181] and timed simulation [218]
4Given a timed automaton A, is there a run of A from some initial location l0 ∈ L0 to some final location

l f ∈ L f ? If so, find such a run which consumes minimum-time.



www.manaraa.com

2.3. TIMED REGULAR LANGUAGES AND THE DECISION PROBLEMS 25

are decidable in EXPTIME. Universality [15], language equivalence [14, 15], language in-

clusion [14, 15], determinizability5 [125, 222], computing the clock degree [222, 239],

minimization of the number of clocks6 [125, 222], and reducing the size of constants7 [222]

for timed automata are undecidable.

A flat timed automaton is a timed automaton that does not have any nested loops: for

every location l there is at most one non-empty path from l to itself. Any timed automaton

can be emulated by a flat timed automaton [89]. Comon and Jurski have shown that the

binary reachability between any two sets of states of a timed transition system of a timed

automaton is decidable and they left the complexity issue as an open problem [89]. Instead

of conventional region-based or zone-based technique, they first convert a timed automaton

to an equivalent flat timed automaton and then use the additive theory of real numbers

to prove the decidability of binary reachability in a timed automaton. We will call their

technique the flattening technique. The flattening technique allows one to express and

verify some important properties that cannot be expressed or verified by region-based (or

zone-based) techniques such as “the delay between event a1 and event b1 is never larger

than twice the delay between event a2 and event b2”. On the other hand, their technique is

unable to express all the region-based (or zone-based) timing properties.

A deterministic timed automaton has at most one initial state, no ε-transitions, and

no pair of edges which have the same action from the same source location with a com-

mon clock valuation which can satisfy the guards of both edges. A deterministic timed

5Given an automaton A, does there exists a deterministic automaton B such that L(A) = L(B)? If so,
construct B.

6Given a timed automaton A with n clocks, does there exists a timed automaton B with n − 1 clocks, such
that Lt(A) = Lt(B)? If so, construct B.

7Given a timed automaton A where constants are not greater than k, does there exist a timed automaton B
where constants are not greater than k − 1, such that Lt(B) = Lt(A)? If so, construct B.
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automaton has only one run. Deterministic timed automata are strictly contained in nonde-

terministic timed automata [14, 15]. Deterministic timed automata are closed under union

[14, 15], intersection [14, 15], and complement [14, 15]. Deterministic timed automata are

not closed under projection [14, 15] and renaming [16]. Emptiness checking, universality,

language inclusion, languages equivalence problems for deterministic timed automata are

PSPACE-complete [14, 15].

2.4 Variants

Many variants of timed automata have been proposed in the literature. There are three pri-

mary motivations behind this flourish of variants: the first and most significant one is to

improve existing analysis capabilities of timed automata (e.g., optimal path finding [22],

schedulability checking [39, 121], memory consumption checking [22, 38, 121], and so

forth ), the second one is to increase expressiveness by adding modeling features (such as

probability [34, 166] or recursion [92]), and the last reason is to increase conciseness of

the model [64]. There are also some variants of the semantics [30, 101] to make timed

automata a more robust and accurate real-time model. This chapter identifies almost eighty

variants of timed automata, and there may be many more. The number is surprising if one

considers that the first variant was proposed only two decades ago. The chapter classifies all

these variants into eleven classes: classical timed automata (Section 2.4.1), timed automata

with other clock constraints (Section 2.4.2), timed automata with other clock updates (Sec-

tion 2.4.3), timed automata with other clock rates (Section 2.4.4), timed automata with

resources (Section 2.4.5), timed automata with probability (Section 2.4.6), timed automata

with communication (Section 2.4.7), timed automata with determinizability (Section 2.4.8),
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timed automata with self-embedded recursion (Section 2.4.9), timed automata with suc-

cinctness (Section 2.4.10), and timed automata with games (Section 2.4.11). This classi-

fication (Tables 2.1–2.2) is intended to help a reader to understand the major objectives,

similarities, and dissimilarities of a huge number of variants of a complicated theoretical

research area. According to Tables 2.1–2.2, the class of timed automata with resources

has the highest number of variants and the class of timed automata with determinizability

has the second highest number of variants. The main motivation behind the flourish of the

class of timed automata with resources is to improve expressiveness and analysis capabili-

ties. On the other hand, the goal of the research on timed automata with determinizability

is to improve the complexity of key decision problems and to achieve more closure prop-

erties. Typically, an increase in expressive power and analysis capabilities comes at the

expense of increased complexity and fewer closure properties. Both of these conflicting

goals are being extensively researched. This section attempts to provide a glimpse into all

these eleven classes by discussing the fewest possible variants with their major decidability

results and tools.

2.4.1 Classical Timed Automata

We classify timed automata variants with the same major theoretical properties and expres-

sive power of the standard timed automata of Definition 1 as classical timed automata.

Either a construction rule or an accepting condition of a variant of classical timed automata

is dissimilar to other variants of this class. Büchi timed automata [14], Muller timed au-

tomata [14], diagonal-free timed automata [14], timed automata with diagonal constraints

[14], timed automata with ε-transitions [14], timed automata without ε-transitions [14],

safety timed automata [140], flat timed automata [89], and timed I/O automata [156, 4, 95]
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Class Variants

Classical
Timed
Automata

Büchi Timed Automata [14], Muller Timed Automata [14],
Diagonal-Free Timed Automata [14], Timed Automata with
Diagonal Constraints [14], Timed Automata with ε-Transitions
[14], Timed Automata without ε-Transitions [14], Safety Timed
Automata [140], Flat Timed Automata [89], Timed I/O Automata
[156, 4, 95]

Timed
Automata with
Other Clock
Constraints

Timed Automata with Multiplication Clock Constraints [14],
Timed Automata with Periodic Clock Constraints [87], Timed
Automata with Additive Clock Constraints [47], Timed
Automata with Irrational Clock Constraints [194], Parametric
Timed Automata [17], L/U Automata [145] , Timed Automata
with ASAP Semantics [101]

Timed
Automata with
Other Clock
Updates

Updatable Timed Automata [64], Suspension Automata [193],
Integer Reset Timed Automata [217], Weighted Integer Reset
Timed Automata [191], Task Automata [121], Fixed Task
Automata [121], Flexible Task Automata [121], Feedback Task
Automata [121], Non-Feedback Task Automata [121],

Timed
Automata with
Other Clock
Rates

Hybrid Automata [13], Rectangular Automata [138], Controlled
Timed Automata [102], Stopwatch Automata [80], Distributed
Time-Asynchronous Automata [110], Distributed Timed
Automata with Independently Evolving Clocks [3], Interrupt
Timed Automata [49], Robust Timed Automata [129], Perturbed
Timed Automata [19]

Timed
Automata with
Resources

Weighted Timed Automata [22], Priced Timed Automata [38],
Uniformly-Priced Timed Automata [37], Dual-Priced Timed
Automata [180], Multi-Priced Timed Automata [180], Priced
Probabilistic Timed Automata [51], Extended Timed Automata
with Tasks [196], Extended Timed Automata with Asynchronous
Processes [122], Task Automata [121], Fixed Task Automata
[121], Flexible Task Automata [121], Feedback Task Automata
[121], Non-Feedback Task Automata [121], Concavely-Priced
Timed Automata [155] , Concavely-Priced Probabilistic Timed
Automata [152], Timed P Automata [32],Weighted Integer Reset
Timed Automata [191], Priced Timed Game Automata [61]

Table 2.1: Classification of the variants of timed automata (part 1)
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Class Variants

Timed
Automata with
Probability

Discrete Probabilistic Timed Automata [9], Continuous
Probabilistic Timed Automata [167], Concavely-Priced
Probabilistic Timed Automata [152], First-Order Probabilistic
Timed Automata [123]

Timed
Automata with
Communication

Communicating Timed Automata [158], Communicating
Hierarchical Timed Automata [171], Multi-Queue Discrete
Timed Automata [209], Omega Deterministic Timed Alternating
Finite Automata [120], Synchronized Concurrent Timed
Automata [234], Queue-Connected Discrete Timed Automata
[147], Phase Event Automata [143] , Timed Cooperating
Automata [173], Cottbus Timed Automata [54]

Timed
Automata with
Determinizabil-
ity

Event-Clock Automata [16], Event-Recording Automata [16],
Event-Predicting Automata [16], Eventual Timed Automata
[115], Recursive Event-Clock Automata [141], Product Interval
Timed Automata [117], Timed Automata with Input-Determined
Guards [116], Continuous Timed Automata with
Input-Determined Guards [85], Counter-Free Input-Determined
Timed Automata [86], Event-Clock Visibly Pushdown Automata
[229]

Timed
Automata with
Self-Embedded
Recursion

Recursive Event-Clock Automata [141], Discrete Pushdown
Timed Automata [92], Pushdown Timed Automata [92], Past
Pushdown Timed Automata [93], Timed Visibly Pushdown
Automata [119], Event-Clock Visibly Pushdown Automata
[229], Recursive Timed Automata [228], Timed Recursive State
Machines [43]

Timed
Automata with
Succinctness

Timed Automata with Deadlines [56], Prioritized Timed
Automata [185], Variable Driven Timed Automata [219], Timed
Automata with Urgent Transitions [33], Alternating Timed
Automata [182], Weak Alternating Timed Automata [201]

Timed
Automata with
Games

Timed Game Automata [190], Priced Timed Game Automata
[61], Timed I/O Automata [156, 4, 95]

Table 2.2: Classification of the variants of timed automata (part 2)

are the major variants of this class.
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2.4.2 Timed Automata with Other Clock Constraints

This subsection presents variants of timed automata having more expressive clock con-

straints than classical timed automata. Usually these more expressive variants lose many

important theoretical properties to facilitate extra expressiveness. In terms of practical ap-

plications, parametric timed automata [17] is the most influential and important group of

variants in this subsection.

Figure 2.4: A timed automaton with an ε-transition having no equivalent ε-transition-free
timed automata [50]

Timed Automata with Periodic Clock Constraints The class of ε-transition-free timed

automata is strictly less expressive than the class of timed automata with ε-transitions [50].

The timed automaton in Figure 2.4 accepts a timed language Lε which can be described as

follows: in each open time interval (i, i + 1), i ≥ 0 there occurs at most one b; moreover,

there is an a at time i + 1 if and only if there is no b in (i, i + 1). This Lε cannot be

accepted by a timed automaton which has no ε-transitions. ε-transitions without resets

can be removed from a timed automaton [48] and an ε-transition which does not lie in a

loop can be eliminated [105]. Periodic clock constraints are clock constraints of the form

d + n · θ ≤ x ≤ e + n · θ or d + n · θ ≤ x − y ≤ e + n · θ, where n ∈ N, e ∈ R, and

θ ∈ R+. Periodic clock constraints can express properties such as “the value of clock x is

odd” or “the value of clock x is of the form 0.7 + 4 ·n, where n is some integer". Timed
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automata with periodic clock constraints in the guards and classical timed automata have

the same expressive power [87]. The ε-transition-free (deterministic) timed automata with

periodic clock constraints in the guards are strictly more expressive than the ε-transition-

free classical (deterministic) timed automata [87]. All ε-transitions can be removed from

timed automata by using periodic clock constraints and periodic clock updates8 [111].

Additive, Multiplication, and Irrational Clock Constraints Clock constraints of the

form of x + y ∼ q are called additive clock constraints. The emptiness checking problem

is undecidable for timed automata with additive clock constraints which have four clocks

[47]. Timed automata with additive clock constraints having two clocks are strictly more

expressive than classical timed automata with two clocks. The emptiness checking prob-

lem is decidable for timed automata with additive clock constraints having two clocks [47].

While the emptiness checking problem is still open for timed automata with additive clock

constraints which have three clocks. Introducing clock constraints such as x = q ·y in the

guards makes the emptiness checking problem for timed automata undecidable [15]. Al-

lowing irrational constants in the clock constraints causes the emptiness checking problem

to be undecidable [194].

Parametric Timed Automata Timing properties of almost all the real-time protocols are

typically not concrete but parametric such as “message delivery within the time it takes to

execute two assignment statements” [17]. Concrete timing properties, such as “message has

to be delivered within 2 time units and an assignment statement has to be executed within

1 time unit”, are applicable only for a specific environment. In MDD of real-time systems,

8During a periodic update of a clock that clock is reset to a periodic value instead of 0.
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parametric timing properties are very appealing for a real-time model of a reusable soft-

ware module (which is important in MDD of software) or an off-the-shelf real-time hard-

ware (which is gaining popularity in the automotive industry to cope with different original

equipment manufacturers (OEM) and brands). Moreover, frequently real-time systems are

embedded in diverse environments which forces a designer to model the system accord-

ing to certain parameters. In the early design phases, parametric models are usually more

convenient for a designer compared to concrete models. Parametric timed automata [17],

a generalized form of timed automata, can model parametric timing properties by intro-

ducing parametric clock constraints. A parametric timed automaton is a timed automaton

having an accepting run for a parameter valuation of its parametric clock constraints. The

emptiness problem for a parametric timed automaton is described as “is there a parame-

ter valuation for which the automaton has an accepting run?”. The emptiness checking

for parametric timed automata with three or more clocks is undecidable, while it is decid-

able with only one clock and is an open problem with two clocks [17]. Parametric timed

automata can be divided into linear parametric timed automata (where all parametric ex-

pressions are linear) and non-linear parametric timed automata. An important subclass

of parametric timed automata is lower bound automata [145], in which parameters are

only used to calculate the lower bounds in clock constraints. Similarly, the class of upper

bound automata [145] is a specialization of parametric automata and parameters in upper

bound automata are only used to determine the upper bounds in clock constraints. These

two classes of automata are together called lower bound/upper bound automata or L/U au-

tomata [145]. Although L/U automata are a restricted form of parametric timed automata,

they can be used to model many noteworthy algorithms and protocols such as Fisher’s

mutual exclusion algorithm [170], and the root contention protocol [1]. The emptiness
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checking problem for L/U automata is PSPACE-complete [70, 145]. IMITATOR [24] can

extract the largest safe9 subset of parameter values for a parametric timed automaton from

a given set of parameter values. HYTECH [135] is also used for the analysis of parametric

timed automata such as reachability analysis and operations on states set. Using the open

source library REDLIB [237], RED [235] also performs parametric safety analysis, simu-

lation checking, and model checking form parametric timed automata. VerICS [157] and

TREX [25] are two other model checkers and analyzers for parametric timed automata.

2.4.3 Timed Automata with Other Clock Updates

Variants of timed automata which add more expressive clock updates to the existing clock

reset of classical timed automata are discussed in this subsection. Like the variants of

Subsection 2.4.2, variants of this subsection also fail to retain some important theoretical

properties of classical timed automata.

Updatable Timed Automata Timed automata with diagonal constraints are exponen-

tially more concise10 than diagonal-free timed automata [62]. Timed automata with di-

agonal constraints are not more expressive than diagonal-free timed automata [15, 50].

Diagonal constraints may yield different behavior in an extension of timed automata called

updatable timed automata [64]. Unlike a classical timed automaton, when a edge is taken,

an updatable timed automaton can update a specified subset of clocks to values other than

0. An update u of a clock x is deterministic if u has at most one possible value to assign

9Safe in a sense that the model is guaranteed not to violate a set of specified safety properties.
10The size of an automaton A, denoted |A|, is the length of its (binary) encoding (states and transitions) on

the tape of a Turing Machine. Automaton A1 is exponentially more concise than automaton A2 if these two
automata are language equivalent and |A1| is polynomial in n, where |A2| is at least exponential in n.
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as ν′(x) for any clock valuation ν, where ν′(x) is the value of x after the update u. An ex-

ample of deterministic update is x :=c, whereas x :>c is an nondeterministic update which

can assign any value as ν′(x) which is greater than c. The emptiness checking problem

for updatable timed automata with updates of the form x := x − 1 or y + c <: x :< z + d

is undecidable, where c, d ∈ Q+ [64]. Only allowing updates of the form x := c or x := y

or x :< c keeps the emptiness checking problem PSPACE-complete [64]. Updatable timed

automata behave surprisingly for updates of form x := x + 1 or x := y + c or x :> c or

x :∼ y + c or y + c<: x :< y + d; because these updates make the emptiness checking prob-

lem for updatable timed automata with diagonal constraints undecidable, while the empti-

ness checking problem for diagonal-free updatable timed automata with these updates is

PSPACE-complete [64]. Updatable timed automata for which the emptiness problem is de-

cidable can be converted into equivalent classical timed automata [64]. These decidable

updatable timed automata are more concise than classical timed automata [64].

Suspension Automata A bounded subtraction clock update [121] is a clock update of

the form x := x − n if n ≤ ν(x) ≤ k(x), where n ∈ N0 and k(x) is the ceiling for clock x.

Suspension automata [193], a variant of timed automata, use stopwatch-like clocks and

bounded subtraction clock updates along with x := 0. The language emptiness checking

problem and the language inclusion problem for suspension automata are decidable [193].

However, the language emptiness checking problem for timed automata with unbounded

subtraction clock update in the form x := x − n is undecidable [64].

Integer Reset Timed Automata The class of integer reset timed automata [216, 217]

is a subclass of classical timed automata since it can reset a clock to zero only when it has

an integer value. Edges without reset can occur at any time including at fractional times.
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Integer reset timed automata are less expressive than classical timed automata, e.g., inte-

ger reset timed automata cannot distinguish between the time stamps of actions occurring

within a unit open interval (i, i + 1). Although language inclusion for classical timed au-

tomata is undecidable, it is decidable to check whether a timed regular language contains

an integer reset timed regular language [217]. Contrary to classical timed automata, integer

reset timed automata are closed under complementation [217].

2.4.4 Timed Automata with Other Clock Rates

The evolving rate of change for continuous time clock is called clock rate of that clock. All

clocks of a classical timed automata have the same monotone clock rate. Adding different

kinds of clock rates with classical timed automata gives birth to a very expressive, chal-

lenging, and popular arena of formal methods called formal methods for hybrid systems.

Many researchers consider these variants a completely separate class from timed automata

called hybrid automata [13].

Rectangular Automata and Controlled Timed Automata Each clock may have a dif-

ferent clock rate in rectangular automata [136, 138], which is an interesting extension of

timed automata. Each clock rate is bounded by upper and lower bound constants. In a

rectangular timed automata each clock can have its own and bounded variable clock rate.

A clock can change its clock rate only after performing reset operation in initialized rect-

angular timed automata, where the initialization property states that whenever the rate of

a clock changes it must be reset. For each initialized rectangular automaton there is an

equivalent timed automaton [138]. Thus the reachability problem is decidable for this vari-

ant. Relaxing either the clock rate boundedness or the initialization assumption leads to

undecidability of the reachability problem. Like rectangular automata, clocks in controlled
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timed automata [102] have variable clock rates. Controlled timed automata also allow pe-

riodic clock constraints and stopwatch-like clocks. Stopwatches automata [80], interrupt

timed automata [49], and distributed time-asynchronous automata [110] are other two gen-

eral variants of timed automata which use stopwatch to increase the expressive power of

timed automata. Distributed timed automata with independently evolving clocks [3] are

inspired by distributed time-asynchronous automata and execute in a network of timed au-

tomata each of which may have different clock rates.

Hybrid Automata Hybrid systems—e.g., biological cell networks [127]—are described

by the combination of analog and digital inputs and outputs. Hybrid automata [13], prob-

ably the most famous and most expressive generalization of timed automata, can model

hybrid systems. Hybrid automata thus model discrete controllers embedded within an ana-

log environment e.g., a digitally controlled drone flies in a continuously changing envi-

ronment. A hybrid automaton is a finite automaton associated with real-valued variables

whose trajectories obey general dynamic laws described by differential equations. Under

specified conditions a hybrid automaton can change to different dynamic laws. There are

many subclasses of hybrid automata which are not timed automata such as non-initialized

rectangular automata [136], affine hybrid automata [127], polynomial hybrid automata

[126]. The area of hybrid automata is exceedingly large, for example timed automata can

be seen as a subclass of hybrid automata, and out of the scope of this chapter. Interested

readers can read surveys on hybrid automata [78, 97, 134, 169, 220, 225].

2.4.5 Timed Automata with Resources

This group of variants has been introduced almost a decade after the introduction of classi-

cal timed automata. This group of variants has quickly received a lot of attention because of
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the significance of resources in real-time systems. Now there are at least 18 variants which

can be classified as timed automata with resources. No other class of timed automata has

so many variants.

Weighted Timed Automata or Priced Timed Automata In MDD, a timed automaton

serves as a superior model for a real-time system over a finite state automaton because

timed automata can explicitly assert time constraints. A classical timed automaton, how-

ever, is unable to inform the designer how many resources—such as, bandwidth, power,

development time, money, and so forth—its implementation will consume. This resource

consumption information (especially optimal resource consumption) may play a crucial

role in MDD. A designer can extract the total resource consumption information of the im-

plementation from a model if the designer attaches a resource consumption function to each

state and to each transition of that model. A timed automaton with resource consumption

functions is more desirable than a finite state automaton with resource consumption func-

tions when the resource consumption is proportional to the units of time the implementation

stays in a state. After recognizing the absence of timed automata with resource consump-

tion functions, Alur et al. and Larsen et al. independently introduced timed automata with

resource consumption functions in 2001, and called them weighted timed automata [22]

and priced timed automata [38], respectively. A weighted/priced timed automata con-

sists of a timed automaton A and a price/cost function P that maps every location l ∈ L

and every edge e ∈ E to a nonnegative rational number: P(l) is the cost for staying in

l per unit of time and P(e) is the cost for performing the edge e. Thus, every run in

a weighted/priced automaton has its own accumulated cost and an automaton may have

many runs. As a result, to reach a location from a source location with optimal cost (min-

imum or maximum cost) is an important decision problem for weighted/priced automata.
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This problem is called optimal reachability and is decidable [22, 38]. Optimal reachabil-

ity is a general form of minimum-time reachability. The optimal-reachability problem for

weighted/priced timed automata is PSPACE-complete [22, 38, 60]. Optimal reachability

and optimal scheduling using weighted/priced automata are well studied and supported in

Uppaal CORA, a variant of Uppaal, which is a specialized tool for optimal reachability and

optimal scheduling [39, 40, 176]. REMES-IDE can transform REMES [210] (REsource

Model for Embeded Systems) models into behaviorally equivalent weighted/priced timed

automata [148]. REMES-IDE provides a graphical editor for the resulting priced automata,

as a tool to visually inspect transformation results. Model files for both Uppaal (timed au-

tomata) and Uppaal CORA (weighted/priced timed automata) can be exported to REMS-

IDE for verification and analysis. Because of the good analytical power of weighted/priced

automata, they have been studied extensively and many variants have been proposed such

as uniformly-priced timed automata [37], dual-priced timed automata [180], multi-priced

timed automata [180], concavely-priced timed automata [155], priced timed game au-

tomata [61], concavely-priced probabilistic timed automata [152], weighted integer reset

timed automata [191], and priced probabilistic timed automata [51, 52]. More interesting

information about weighted/priced automata may be found in an article [65] by Bouyer et

al..

Task Automata or Timed Automata Extended With Real-Time Tasks Finite automata

can only describe the arrival sequence among the actions, while classical timed automata

can describe both the arrival sequence among the actions and the arrival time of an action.

Like finite automata, classical timed automata also describe every action as an instanta-

neous instance. Norström et al. [196] have extended timed automata by adding real-time

tasks with actions. Later on their work evolved into task automata or timed automata
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extended with real time tasks with locations [121, 122, 162]. A task is an executable pro-

gram. A task can be described by its task type (or task name), best case computational time,

worst case computational time, relative deadline, priority for scheduling, and (occasion-

ally) resource consumption information. Timed automata in the form of task automata have

been studied for several important analyses such as schedulability, boundedness checking,

non-Zenoness checking, resource consumption computation, and so forth. Compare to the

other variants of timed automata, task automata are a natural model for code synthesis if

the target platform ensures the synchrony hypothesis, that is, the run-times of related sys-

tem functions are negligible compared to the different execution times of the associated

tasks of the model. TIMES [23], based on task automata, is a popular tool in the research

community for real-time code synthesis and scheduling. Schedulability analysis problems

of task automata for multi-processor platforms have been studied in [161].

Timed P Automata A biologically inspired—specifically, the structure and the function-

ing of living cells—model called P systems11 [204] has received huge attention12 in the

area of theoretical computer science for its impressive computational and modeling power.

Membrane computing naturally models mobility, distributed parallel computing, biomolec-

ular systems, and ecological systems. A P system comprises a hierarchy of membranes:

each of these membranes contains a multiset of reactant objects and possibly other mem-

branes. An evaluation rule describes reactants and the resulting product. An evaluation rule

can be applied only to objects of that membrane. In timed P systems [82], a variant of P

systems, each evolution rule is associated with an integer which represents the number of

11P Systems was introduced in 1998 by Gheorghe Păun, whose last name is the source of the letter P in ‘P
Systems’. For more information on P systems please visit http://ppage.psystems.eu/.

12On 3rd October 2003, membrane computing has been selected by Thomson Institute for Scientific Infor-
mation (ISI) as a “Fast Emerging Research Front in Computer Science”.
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time units needed by the rule to be entirely executed. Timed P automaton [32] is a timed

automaton with a discrete time domain where every location is a timed P system. Timed

P automata are useful to study a population which dynamically changes with time e.g., the

population of a place whose dynamics changes with seasons.

2.4.6 Timed Automata with Probability

Any real-time property can be either a hard real-time property (e.g., “the car stops within

800 time units after the break is applied”) or a soft real-time property (e.g., “at most 3% of

all the messages will not be delivered within 5 unit of times”). While hard real-time prop-

erties are essential in many safety critical real-time systems (e.g., robotic surgery), soft

real-time properties are required for many commonly used real-time systems (e.g., video

streaming). Unfortunately, classical timed automata and all its variants discussed above

cannot support soft real-time properties. To serve as a complete model for the MDD of

real-time systems, timed automata have to have support for the specification and analysis

of soft real-time properties along with hard real-time properties. Soft real-time properties

are frequently used in fault tolerant real-time systems (e.g., communication protocols, mul-

timedia protocols) where hard real-time properties are too restrictive: violating a deadline

does not affect the functionality of a fault tolerant protocol. Every edge of a probabilistic

timed automaton encodes its likelihood to occur. This likelihood is calculated from the

execution of certain actions by the system. Hence, probabilistic timed automata can be

used to evaluate quality of service which is the quantitative estimation of the probability of

achieving some target (e.g., perform a certain task in a time bound). Soft real-time proper-

ties are supported by discrete probabilistic timed automata [9, 34, 150, 166]. An expressive

generalization of discrete probabilistic timed automata has been proposed called first-order
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probabilistic timed automata [123]. Clocks in a continuous probabilistic timed automata

[167] can be reset according to continuous probability distributions. On top of soft deadline

properties, continuous probabilistic timed automata also enable stochastic timing, that is,

soft deadlines must be satisfied under the assumption that some set of events is influenced

by a certain continuous time probability distribution. An example [168] of stochastic timing

properties is “the arrival rate of video frames is normal with mean of 40ms and variance of

5ms, and service is exponential with rate 45ms”. Thus stochastic timing properties can es-

timate some important performance parameters such as throughput and mean service time.

Among tools, Uppaal PRO and Fortuna [52] can analyse maximum probabilistic reacha-

bility properties of probabilistic timed automata. PRISM 4.0 [165] provides more general

support for the verification and analysis of both discrete and continuous probabilistic timed

automata. mcpta [133] is another model checker for probabilistic timed automata.

2.4.7 Timed Automata with Communication

Concurrent and communicating models are ideal to model mobile systems, cloud com-

puting, and concurrent embedded systems. Untimed concurrent and communicating mod-

els widely use FIFO channels (queues) to communicate among them. Channels are also

common in real-time concurrent and communicating models such as communicating real-

time state machines [212] and πklt-calculus [203]. Krcál and Yi developed communicating

timed automata in 2006 [158]. A communicating timed automata is a network of timed

automata extended with unbounded channels. Untimed communicating finite state mod-

els are not more expressive than classical finite state automata. A communicating timed

automaton with only one channel and no sharing states has the power of a one-counter

machine. In contrast, a communicating timed automaton with only two channels and no
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sharing states has the power of two-counter machines or Turing machines, thus channels

make the verification of communicating timed automata more difficult [158]. Other timed

automata variants which also use channels to communicate are multi-queue discrete timed

automata [209], omega deterministic timed alternating finite automata [120], synchronized

concurrent timed automata [234], and queue-connected discrete timed automata [147]. An

interesting timed automata variant with communication is phase event automata [143],

which combines both state-base (e.g., Kripke structure) and event-based (e.g., finite state

automata) structures. The advantage is one can combine the benefits of both process al-

gebra (which depends on event-base structure) and model-checking (which depends on

state-base structure).

A state in a hierarchical state machine can be either a normal state or a super-state,

which contains some other states. Although hierarchical state machines, for example,

STATECHARTS [132], UML [55], are a widespread model in MDD, very little research has

been done to understand their theoretical aspects such as expressiveness, decision prob-

lems, concurrency complexity, and formal (unambiguous) semantics. Alur et al. [18] pub-

lished one of the first publications on the topic of the decision problems and succinctness

of (untimed) communicating hierarchical state machine. Inspired by their work another

group came up with communicating hierarchical timed automata [171, 172] to study the-

oretical aspects of real-time hierarchical state machines. Like (untimed) communicating

hierarchical state machines, the reachability problem for communicating hierarchical timed

automata is EXPSPACE-Complete.

Beyer and Rust developed a hierarchical variant of timed automata for modular spec-

ification. The name of their variant is Cottbus timed automata, which are developed in

Cottbus, Germany [54]. Rabbit [53] is a reachability and refinement-checker for Cottbus
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timed automata. Another hierarchical timed automata variant is timed cooperating au-

tomata [173, 174]—a real-time variant of cooperating automata [112].

2.4.8 Timed Automata with Determinizability

Alur, Fix, and Henzinger [16] proposed a determinizable subclass of timed automata named

event-clock automata after determining that the major obstacle to achieving determiniz-

ability of classical timed automata is nondeterministic clock resets. All the clocks in an

event-clock automaton are divided into two disjoint sets: one set contains only event-

recording clocks and another set has only event-predicting clocks. Every action or event

in event-clock automata has a one-to-one relation with an event-recording clock and with

an event-predicting clock. All the clocks in an event-recording automaton are associated

with actions and the number of actions are fixed, thus the number of clocks is fixed. An

event-recording clock records when the associated action occurred the last time, and an

event-predicting clock shows when the associated action will occur next time. Event-clock

automata do not have any ε-transitions. Removing all the event-predicting clocks from an

event-clock automaton will convert it into an event-recording automaton. Similarly, elimi-

nating all the event-recording clocks from an event-clock automaton will transform it into

an event-predicting automaton.

Event-clock (or event-recording or event-predicting) automata are determinizable thus

they are closed under complement. Event-clock (or event-recording or event-predicting)

timed automata are closed under all the Boolean operations. The language-inclusion prob-

lem for event-clock automata is PSPACE-complete [16]. Dima defined a class of regular

expressions equivalent to event-clock automata [107]. D’Souza discussed the logical char-

acterization of event-clock automata and event-recording automata [113, 114]. Event-clock
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visibly pushdown automata [229] and recursive event-clock automata [141] have also been

proposed for determinizable self-embedded recursive timed automata. Product interval

timed automata [117] are a subclass of event-recording automata that can be used to model

the timed behavior of asynchronous digital circuits. Other related timed automata variants

are timed automata with input-determined guards [116], eventual timed automata [115],

counter-free input-determined timed automata [86], and continuous timed automata with

input-determined guards [85]. TEMPO [214] is a model checker for event-recording au-

tomata and was first released in 2001.

2.4.9 Timed Automata with Self-Embedded Recursion

Self-embedded recursion13 can model naturally the control flow of sequential computation

in typical programming languages with nested and recursive invocations of program mod-

ules. A pushdown timed automata [92] is a variant of classical timed automata which can

express real-time self-embedded recursive properties by augmenting a timed automaton

with a stack. Many real-time non-regular properties are required for real-time software

verification. Unfortunately, introducing self-embedded recursion destroys many important

closure properties (e.g., intersection) for modeling and verification. Therefore, these kind

of properties are usually handled by less expressive but practically efficient finite indexing

techniques such as bounded real-time model-checking [202].

The binary reachability of a pushdown timed automaton is decidable [92]. The bi-

nary reachability of past pushdown timed automata [93], a parametric variant of discrete

pushdown timed automata where the past-formulas14 can be used as clock constraints, is

also decidable. The universality problem and language inclusion problem for timed visibly

13Balanced parentheses languages are well known examples for self-embedded recursion.
14A past formula is a formula which includes the past parametric values.
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pushdown automata [119], nondeterministic timed version of visibly pushdown automata

[21], even with a single clock is undecidable.

A deterministic timed automata version of visibly pushdown automata called event-

clock visibly pushdown automata [229] is closed under Boolean operations. It is decidable

to check whether a timed visibly pushdown language is included in an event-clock visi-

bly pushdown language [229]. Recursive timed automata [228] and timed recursive state

machines [43] were proposed in 2010.

2.4.10 Timed Automata with Succinctness

The main motivation behind the creation of this group of timed automata variants is to

improve modeling rather than to achieve better analyses.

Alternating Timed Automata An (untimed) alternating finite automaton [84] is a non-

deterministic finite automaton whose transitions are divided into existential and universal

transitions. Let A be, for example, an alternating automaton; for an existential transition

(s1, a, s2 ∨ s3), A nondeterministically chooses an edge from state s1 to either s2 or s3 after

reading a—like a nondeterministic finite automaton; for a universal transition (s1, a, s2∧s3),

A moves to s2 and s3 after reading a, where the transition simulates the behavior of a par-

allel machine. An alternating finite automaton accepts a word when there exists a run tree

on that word such that every path ends in an accepting state. A run is represented by a run

tree due to the universal quantification. Any alternating finite automaton is equivalent to a

nondeterministic finite automaton. Alternating models are useful to express clauses which

are combined by Booleans. Alternating (tree) timed automata [103], a real-time extension

of alternating automata, are closed under all Boolean operations [182, 198]. Emptiness

checking for alternating timed automata is decidable only for one clock over finite timed



www.manaraa.com

2.4. VARIANTS 46

words; any extension, such as, infinite timed words, more than one clock, ε-transitions,

leads to undecidability [182, 198]. Undecidability proofs of the emptiness checking prob-

lem for alternating timed automata with one clock over infinite words rely on the ability to

express “infinitely often” properties. Weak alternating timed automata [201] do not permit

one to express “infinitely often” properties, thus the emptiness checking problem for weak

alternating timed automata over infinite words is decidable. Interestingly, bounded time

model checking of alternating timed automata over finite or infinite words is decidable as

in bounded time the emptiness checking is decidable [149]. TCTL model checking for

alternating timed automata has also been discussed [103].

Timed Automata with Deadlines Urgency—urgent transitions and urgent locations—is

a common and important concept in real-time models, such as, in timed Petri nets [151],

because they allow more succinct representation and resolution of non-determinism in real-

time concurrent models. When an urgent transition is enabled the control of the automaton

has to perform the transition instantaneously without spending any time at that location.

All the transitions originating from an urgent location are urgent transitions. Urgency has

been first introduced by Bornot et al. with timed automata as timed automata with dead-

lines [56]. Later on many others generalized timed automata with deadlines. Among them

Brabuti and Tesei proposed a model, which is called timed automata with urgent transi-

tions [33]. In Brabuti’s model, an urgent transition must be performed within a fixed time

interval from its enabling time and an urgent transition has higher priority than other non-

urgent transitions enabled in the same state. Although from a language point of view timed

automata with urgent transitions are not more expressive than classical timed automata,

from a specification point of view the use of urgent transitions allows shorter and clearer

specifications of urgent and periodic behaviors. Variable-driven timed automata [219] and
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prioritized timed automata [185] are two additional timed automata variants mainly focus-

ing on urgency issues. Uppaal [36], Uppaal Tiga [35] and many other tools use urgency for

the specification of their models.

2.4.11 Timed Automata with Games

A classical timed automaton models only closed real-time systems where every thing is

controlled while there exist many open real-time systems which interact with uncontrolled

environments (or other systems) and these uncontrolled environments influence the behav-

ior of those systems. A good example of real-time open systems is a pacemaker (an open

system) which continuously interacts with a heart (an uncontrolled environment). Pace-

maker’s performance crucially depends on the exact timing of an action performed either

by the system or by the environment. Timed game automata [190] along with their con-

troller synthesis strategies have been introduced to develop such open real-time systems.

The game reachability problem is whether the system has a strategy to reach a target state

regardless of how the environment behaves. The game minimum-time reachability problem

in timed game automata is finding the minimum time required by the system to reach a

target state regardless of how the environment behaves. Both the game reachability and

the game minimum-time reachability problems for timed game automata are EXPTIME-

complete [74, 137, 154]. Bouyer et al. have discussed optimal strategies in priced timed

game automata, which is a combination of timed game automata and priced timed automata

[61].

A timed I/O automaton [156, 4, 95] is a timed automaton which has an input alphabet

along with a regular output alphabet. The controller plays controllable output transitions

and the environment plays uncontrollable input transitions; thus timed I/O automata are
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a natural model for timed games. Uppaal Tiga [35], a timed I/O automata-based tool,

is a well-known tool for solving games based on timed game automata with respect to

reachability and safety properties. Synthia [118], a tool developed in Saarland University,

Germany, performs verification and controller synthesis for timed game automata.

Variants of this class, timed automata with games, are a direct generalization of classical

timed automata. This class itself is emerging as a big research area mainly because of

its controller synthesis application. As for the case of hybrid automata, this survey does

not elaborately discuss the timed automata with games class because of its vastness. An

interested reader of timed games may find the article [81] to be an easy and comprehensive

reading.

2.5 Tools

The rich and strong theoretical foundation of timed automata makes them a good candidate

to use as the underlying formal model for real-time MDD. Region-based approaches are not

suitable for practical purposes because of the exponential size of region automata. Most

of the tools use zone-based approaches as these approaches are practically more efficient

and scalable. Zone-based techniques have changed a lot over time to overcome many de-

ficiencies. This large number of changes has made it challenging to keep these tools up to

date. A few tools, such as, Uppaal [36], RED [235], and VerICS [157], have been actively

maintained and have evolved for a long period of time. A bright future waiting for timed

automata-based tools as zone-based techniques are now well-established. A complete and

detailed survey paper on timed automata-based tools could be an appealing work in the re-

search community. A survey on timed automata-based tools is a small part of this chapter

and it provides only a skeleton view of timed automata-based tool research. Nonetheless,
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this chapter lists forty timed automata-based tools. We did not personally perform any ex-

periments on these tools. Rather, our survey mostly relied on related publications, websites,

and developers of each tool to collect information.

Tables 2.3–2.6 list some of the timed automata-based or closely related tools available

on the web and in the literature. All these listed tools were developed and are maintained

mainly for research and academic purposes. The first column of these tables displays the

names of the listed tools; the second column presents the description of the functionality

of these tools; at the end, the third and fourth columns show the first release year and the

latest release year15 of these tools. All these release years have been confirmed by the

respective developers other than TASM [200], TEMPO [214], HyTech [135], RED [235],

TART [131], Fortuna [52], PRISM 4:0 [165], XAL [76], and McAiT [186].

Uppaal [36], probably, is the most successful and influential timed automata-based anal-

ysis and verification tool. Uppaal is now also available for commercial use. This tool was

developed and is maintained by the Uppaal research group. Uppaal group, a timed au-

tomata focused research group, is formally a collaboration between two research groups

of Uppsala University, Sweden and Aalborg University, Denmark. Uppaal PRO, Uppaal

PORT [144], Uppaal CoVer [142], Uppaal Tiga [35], Uppaal Cora [39], Uppaal TRON

[178], TIMES [23], CATS [160], SAVE IDE [211], McAiT [186], and TASM [200] are

some other timed automata-based tools that were developed and are maintained by the Up-

paal research group. Tools such as McAiT [186], SAVE IDE [211], TASM [200] have been

put into the Uppaal group because in addition to having been strongly influenced by the

Uppaal tool, some of the major developers (e.g., Wang Yi and Paul Pettersson) of these

tools have strong past or present ties with the Uppaal group. Uppaal Tiga [35], TIMES

[23], and Uppaal TRON [178] are popular and highly-cited timed automata-based research
15We did not consider releases after year 2011.
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Name Description First
Rele.

Latest
Rele.

Uppaal [36]

An integrated tool environment for
modeling, validation and verification of
real-time systems modeled as networks of
timed automata, extended with data types.

1995 2011

Uppaal PRO
A reachability analysis tool for probabilistic
timed automata.

2008 2009

Uppaal PORT
[144]

A tool for component-based modeling,
simulation, and verification of embedded
systems modelled as timed automata.

2006 2008

Uppaal CoVer
[142]

A tool for creating test suites from timed
automata with coverage specified by
coverage observers.

2005 2009

Uppaal Tiga
[35]

A tool for solving games based on timed
game automata with respect to reachability
and safety properties.

2005 2011

Uppaal Cora
[39]

A tool for cost optimal reachability analyses
for priced timed automata.

2002 2006

Uppaal TRON
[178]

A black-box conformance testing tool, based
on timed automata, for embedded real-time
software.

2004 2009

TIMES [23]
A tool set for modeling, schedulability
analysis, synthesis of (optimal) schedules
and executable code.

2002 2005

CATS [160]

A tool for compositional timing and
performance analysis of systems modeled
using timed automata and the real-time
calculus.

2007 2007

SAVE IDE
[211]

A tool for design, analysis and
implementation of component-based
embedded real-time systems using timed
automata.

2008 2009

McAiT [186]
A timed automata-based analyzer for
multicore real-time software.

2010 2010

Table 2.3: Timed automata-based or related tools (part 1)
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Name Description First
Rele.

Latest
Rele.

TASM [200]
A tool for specification, simulation, and
verification of real-time systems using timed
automata.

2007 2008

Kronos [98]
A model checker for timed automata against
TCTL formulas.

1992 2002

SynthKro [7]
A tool for controller synthesis of timed
automata.

2002 2002

Open-Kronos
[227]

A model-checker for timed Büchi automata. 1997 2005

TAXYS [88]
A timed automata-based tool for the
development and verification of real-time
embedded systems.

2000 2001

minim [226]
A tool for minimization of timed automata
with respect to time-abstracting bisimulation.

1996 2001

RTSpin [224]
A verification tool which extends Spin with
quantitative dense time features using timed
Büchi automata.

1993 2004

IF [69]

A validation platform for a timed
automata-based specification language
which is expressive enough to represent
major modeling and programming languages
for distributed systems such as real-time
SDL and UML.

1998 2004

TReX [25]
A reachability analyzer for parametric timed
automata.

2000 2006

IMITATOR
[24]

A tool for extracting the largest safe subset
of parameter values for a parametric timed
automaton from a given set of values.

2009 2011

CMC [175]
A timed automata-based compositional
model-checker.

1995 2004

Synthia [118]
A tool for verification and controller
synthesis for timed automata.

2011 2011

Table 2.4: Timed automata-based or related tools (part 2)
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Name Description First
Rele.

Latest
Rele.

mcpta [133]
A model checker for probabilistic timed
automata.

2009 2011

MCTA [163]
A timed automata-based model checker to
provide shortest error trace.

2008 2009

Rabbit [53]
A model checker for Cottbus timed
automata.

1999 2002

MIRELA
Framework
[104]

MIRELA’s compiler generates timed
automata for simulation and verification of
mixed reality applications.

2007 2008

XAL [76]
A web oriented programming language
based on timed automata.

2008 2008

WST [75]
A tool for design, validation and verification
of composite Web Services with timed
restrictions using timed automata.

2007 2011

VerICS [157]

A (bounded, unbounded, parametric, and
non-parametric) model checker for networks
of communicating automata (such as timed
automata, time Petri nets) and for high level
languages (such as Promela, UML, Java, and
Estelle).

2003 2010

PRISM 4:0
[165]

A verification tool for probabilistic models
including probabilistic timed automata.

2010 2011

AITARTOS
[164]

A tool for automatic implementation of
timed automata model in a real-time
operating system.

2010 2011

Fortuna [52]
A model checker for priced probabilistic
timed automata.

2010 2010

Priced-Timed
Maude [42]

An analyzer for priced timed automata. 2008 2008

RED [235]
A model checker and simulation checker for
timed automata and parametric analyzer for
parametric timed automata.

2000 2011

Table 2.5: Timed automata-based or related tools (part 3)
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Name Description First
Rele.

Latest
Rele.

HyTech [135]
A model checking and analyses tool for
linear hybrid automata including parametric
timed automata.

1995 2003

TEMPO [214]
A model-checker for event recording
automata.

2001 2001

DREAM [188]
A timed automata-based analyzer for
distributed embedded systems.

2005 2007

TART [131]
A prototype to generate Java code from
timed automata using RTSJ.

2010 2010

VInTiMe [5]

VInTiMe is a suite of timed automata-based
tools (Lapsus [73], VTS [6], ObsSlice [71],
and Zeus [72]) that combines high-level
expressive power, unassisted
property-preserving model-reduction and
low-level distributed model checking power
to describe and verify complex real-time
systems.

2003 2009

Table 2.6: Timed automata-based or related tools (part 4)

tools for controller synthesis, code synthesis, and black-box testing, respectively.

Verimag, France is a leading research center in embedded systems that was officially

established in 1993. Until 2006, Verimag was active in timed automata-based tool re-

search and development. Many timed automata-based tools such as Kronos [98], SynthKro

[7], Open-Kronos [227], TAXYS [88], minim [226], RTSpin [224], IF [69], and TReX

[25] are developed and maintained by this research center. Kronos [98] is a very well-

known timed automata-based Verimag research tool. However, there has been no official

release of Kronos in the last 10 years. Laboratory Specification and Verification (LSV),

ENS Cachan, France developed a timed automata-based compositional model checking

tool named CMC [175] in 1994, and there is no new version of this tool after 2004. In-

stead of updating CMC [175], LSV is actively developing a new timed automata-based tool
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IMITATOR [24] for parametric analysis. Saarland University of Germany has developed

two timed automata-based tools: mcpta [133] for model checking and Synthia [118] for

verification and controller synthesis. No other group has developed more than one tool of

Table 2.3 and Table 2.4. Almost all the timed automata-based research tools are developed

in Europe. Uppaal and Verimag are the main two driving forces of timed automata-based

tool research. Release dates in Tables 2.3–2.6 indicate Verimag has not been very active

in this research arena recently. A large number of successful tools, the diversity in tools

functionality, and the long maintenance period suggest that the Uppaal group is the most

established group in this arena.

Purposes Tools
Black-Box Testing and Related Uppaal TRON [178], Uppaal CoVer [142]

Code Synthesis and Scheduling
TIMES [23], SAVE IDE [211], AITARTOS
[164], TART [131]

Controller Synthesis
Uppaal Tiga [35] [35], SynthKro [7], Synthia
[118]

Component-Based Development Uppaal PORT [144], SAVE IDE [211]
Model Minimization minim [226], VInTiMe [5]
Mixed Reality Language
Development

MIRELA Framework [104]

Web Related Development XAL [76], WST [75]
Parametric Analysis and

Verification
TReX [25], IMITATOR [24], VerICS, HyTech
[135], RED [235]

Probabilistic Analysis and
Verification

Uppaal PRO, mcpta [133], PRISM 4:0 [165],
Fortuna [52]

Resource Analysis and
Verification

Uppaal Cora [39], TIMES [23], CATS [160],
Fortuna [52], Priced-Timed Maude [42]

Other Analyses and Verification

Uppaal [36], TASM [200], McAiT [186],
Kronos [98], Open-Kronos [227], TAXYS [88],
RTSpin [224], IF [69], CMC [175], MCTA
[163], Rabbit [53], VerICS, RED [235],
TEMPO [214], DREAM [188], VInTiMe [5]

Table 2.7: Major purposes of timed automata-based or related tools
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From the tool descriptions of Tables 2.3–2.6, we can categorize these forty tools into

eleven classes depending on their major functionality: black-box testing and related, code

synthesis and scheduling, controller synthesis, component-based development, model min-

imization, mixed reality language development, web related development, parametric anal-

ysis and verification, probabilistic analysis and verification, resource analysis and verifica-

tion, and other analyses and verification. Table 2.7 presents all these timed automata-based

(or related) tools and their classification. Table 2.7 clearly indicate that the majority of

timed automata-based tools is used for real-time analysis and verification purposes and that

tools are also beginning to be used for other purposes. The Uppaal group, Verimag, LSV,

and Saarland University usually develop separate tools for each major functionality. On the

other hand, developers of RED [235] and VerICS [157] add major functionality—such as

parametric analysis, higher level model analysis—with these tools in each new release. It

would be worthwhile to do a survey which would present detailed comparisons depending

on functionality and performance of all the timed automata-based tools of the same class.

2.6 Discussion

This survey took more than a year to finish. It helped us to pick the right methods, variants,

and tools that arose during the thesis research. We hope this work brings similar awareness

to new researchers in timed automata-based research. This chapter, additionally, presents

the background knowledge required for the subsequent chapters.

We propose timed process automata in Chapter 4. Resource constraints may not permit

a hierarchical system to activate all of its components at the same time. Such resource

constraints of can be modeled using timed process automata thus they are a variant of

timed automata with resources. Task automata can model only two layers of hierarchy
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and only closed systems. Our proposed variant can model any numbers of hierarchies and

can model both closed and open systems. Moreover, timed process automata can model

private communication among components. Timed process automata are a member of the

class of timed automata with succinctness because they hide many design details from the

designers to achieve succinctness. Timed process automata are also timed game automata

[190, 100, 4, 95] because the new variant uses timed games for analysis.

This survey did not discuss real-time temporal logics, real-time formal verification, and

real-time controller synthesis because these topics are mostly related to real-time formal

models in general instead of being specific to timed automata. There are many surveys

[2, 81, 67, 189, 192, 199, 225, 236, 240] which may be attractive for readers who are

interested in these real-time formal methods.
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Chapter 3

Synthesis of a Reconfiguration Service for

Mixed-Criticality Multi-Core Systems

We synthesize task-level reconfiguration services to ensure fault-tolerance of a mixed-

criticality automotive system that consists of an asymmetric multi-core processor (AMP).

The system has a fault-intolerant AMP scheduler. We augment the existing scheduler with

supplementary reconfiguration services, which we synthesize. The services assure the pe-

riodic executions of all the critical tasks in the presence of faults from a fault model.

We use timed games at synthesis-time and lookup tables at runtime to provide task-level

reconfiguration, a cost-effective fault-tolerance technique, for mixed-criticality multi-core

systems. System-level requirements for embedded, real-time software in many domains

(such as automotive) have enough flexibility to reallocate tasks from one processing core

to another. A task-level reconfiguration technique reduces the number of redundant cores

that are used only to provide fault-tolerance by reallocating the loads of the failed cores

to the non-redundant operational cores. Reduction in the amount of expensive hardware

gives task-level reconfiguration a hope to be a dominant fault-tolerance technique in the

automotive industry, where cost-efficiency and fault-tolerance are both crucial issues. Since
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this economical technique can handle tasks with different levels of criticality, one of its

prospective application sectors is next-generation automotive systems, most of which are

expected to be mixed-criticality multi-core systems.

Formal methods have been used for the development of fault-tolerant real-time systems.

However, in the industry, fault-tolerance problems are typically designed, analyzed, and

solved using classical control theory [241, 146]. Timed game theory [190, 29, 100], a

dense-time automata-based game theory, is almost unexplored in the industry. The use of

timed game theory to solve industrial problems is attractive because of automated controller

synthesis, visual modeling, and dense-time formal analysis. Nevertheless, applying timed

game theory to solve industrial problems is challenging because of its high computational

complexity.

We use timed games to synthesize the embedded controllers of the reconfiguration ser-

vices. Our approach guarantees fault-tolerance up to a certain maximal number of concur-

rent faults after inserting the services into the system. Such reliable and accurate informa-

tion is very helpful to build mixed-criticality systems cost effectively. Intellectual property

regulations do not allow us to present the case study on the systems of our industry part-

ner. Instead we demonstrate the synthesis process using a small system, which is complex

enough to show the essence of the problem and our approach, yet simple enough to allow

a compact and comprehensible presentation.

Methodology In Section 3.2 we propose a service-based task-level reconfiguration tech-

nique to guarantee fault-tolerance of mixed-criticality multi-core systems. Timed games

are used to synthesize controllers that select safe operational cores to reallocate the periodic

executions of critical tasks from failed cores. Lookup tables are used at runtime to suspend

and reinstate the periodic executions of non-critical tasks to ensure that operational cores
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have enough free processing capacity for the executions of the newly reallocated critical

tasks. We synthesize the reconfiguration services in six steps:

Section 3.3 Identification of modeling abstractions and required system parameters to con-

struct a scalable timed game model of task-level reconfiguration services for fault

tolerance to synthesize them.

Sections 3.3.1–3.3.3 Construction of a timed game model where unsafe locations are reach-

able if and only if a core exceeds its load capacity.

Section 3.4.1 Analysis of the model for the existence of a central controller that ensures no

unsafe location is reachable; binary search for the maximal value of the concurrent-

failures–limit for which such a controller exists; and automated synthesis of the con-

troller of the maximal concurrent-failures–limit.

Section 3.4.2 Synthesis of the reconfiguration services by distributing the synthesized cen-

tral controller and combining the abstracted elements of Section 3.3.

Section 3.5 Leverage scalability of the whole process for industrial systems using aggres-

sive abstractions.

Section 3.6 Generalization of the synthesis process to apply in other multi-core systems,

such as for symmetric multi-core processing (SMP) systems.

We use Uppaal Tiga [35]—a solver for timed games—to model, analyze, and synthesize.

The methodology, however, can be applied using any solvers for timed games, such as

Synthia [118].
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3.1 Related Work

A real-time control problem can be viewed as a two-player timed game [190, 29, 100]

between the controller and the environment, where the controller aims to find a strategy

to guarantee that the system will satisfy a given property, no matter what the environment

does [94]. An example of such reformulation is to find a strategy for the controller (or

a reconfiguration service) to prevent the system from becoming unstable in the presence

of the faults of the fault model. No prior work considered timed games to synthesize

controllers for mixed-criticality fault-tolerant multi-core systems.

We use dense-time model-based approach to synthesize the services because dense-

time models can capture fault occurrences and other uncontrollable behaviors at dense-

time, not only uncontrollable behaviors at discrete time. Timed automata [15, 230]—finite

automata with dense-time clocks, clock constraints, and clock resets—are a prominent class

of formal models to analyze safety and reachability properties of real-time systems. Clocks,

clock constraints, and clock resets are used to express timing behaviors in timed automata,

which have been used for many purposes [230] including for fault diagnosis [221, 63, 238],

analyzing multi-core systems [187, 91], task models [121], and analyzing mixed-criticality

systems [213].

A timed I/O automaton [156, 95] is a timed automaton having an input alphabet and a

set of uncontrollable transitions along with a regular (output) alphabet and a set of regular

(controllable) transitions. The controller plays controllable transitions and the environment

plays uncontrollable transitions; thus timed I/O automata are a natural model for real-time

games. Uppaal Tiga [35] is a well-known timed games-based tool that uses timed I/O

automata for modeling.
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3.2 Task-Level Reconfiguration Technique

We introduce a service-based task-level reconfiguration technique to assure fault-tolerance

of mixed-criticality multi-core systems.

3.2.1 Systems

We consider a class of multi-core systems having asymmetric processing cores. Different

asymmetric cores may exhibit different performance for the same task. The systems under

consideration are mixed-criticality systems, because they execute both critical tasks and

non-critical tasks with two different priorities.

Definition 3. A mixed-criticality system, of our consideration, consists of

• N asymmetric processing cores: core1, core2, · · · , coreN

• M tasks: task1, task2, · · · , taskM

• P critical tasks, where P < M

• A fault-intolerant criticality-unaware AMP scheduler with a static allocation of tasks

• load(taski, core j) is a function mapping each task-core pair to the worst-case load

that the task generates on the core, represented as a number {0, 1, · · · , 100} ∪ {+∞},

where +∞ represents incompatibility between the core and the task.

• Function primary(taski) maps taski to the core on which the task runs in the initial

system-state

• Predicate critical(taski) holds only for critical tasks
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• Each task is executed periodically. Tasks always terminate within the prescribed

periods. Each task is described as a timed I/O automaton. These automata do not

communicate1. Every task can be killed (and resumed) in any of its states by a re-

configuration technique.

• Fault Model: The system is fault-free in its initial system-state. In the other system-

states, the system might suffer three types of faults: safety violations by tasks, per-

manent core failures, and temporary core failures. Critical tasks are assumed not to

breach any safety constraints. Non-critical tasks may violate safety constraints. Ev-

ery core of the system may fail. However, all cores of a system cannot simultaneously

be in their failed states. The maximal number of cores that can fail concurrently is

restricted by CFL, concurrent-failures–limit. No limit is imposed on the total number

of fault occurrences in a run.

Given a mixed-criticality system of Definition 3, we want to obtain a task allocation

policy that is able to cope with the failures admitted by the fault model. We will synthesize

distributed reconfiguration services that assure uninterrupted executions of all the critical

tasks. Section 3.2.2 explains how the reconfiguration technique is expected to work using

an example.

3.2.2 Task-Level Reconfiguration Service

We propose a service-based reconfiguration technique for the fault-tolerance of mixed-

criticality systems, where the system has a task-level reconfiguration service for each core.

1More generally, the communication can be abstracted by suitable understanding of worst and best case
execution times, and terminations are independent of communication
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The services manage critical tasks differently from non-critical tasks. Consider, for in-

stance, a simple mixed-criticality AMP system system1, one of the systems that are de-

scribed in Section 3.2.1. System system1 executes six periodic tasks S, W, D, N1, N2, and N3.

Only three tasks S, W, and D are the critical tasks, where in an execution S records exactly

one update of a speedometer, and W (respectively, D) records at most one update of a wiper

(resp., door). The system has three cores core1, core2, and core3, which are asymmetric

but each core is able to execute all six tasks.

Figure 3.1: Sample trace of system1 with reconfiguration

Figure 3.1 presents a trace of a desirable behavior of system1 in the presence of different
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faults after inserting the reconfiguration services; the figure omits suspended non-critical

tasks to avoid clutter. At any given time, the periodic execution of a task can be assigned

to at most one operational core. A task is assigned to its primary core in the initial system-

state, where a core is responsible to execute only its primary tasks. For instance, core1

is the primary core of task S, and S is a primary task of core1 in Figure 3.1. We call a

non-primary core a backup core of a critical task when that core can execute that task;

similarly, a task is a backup task of its backup core. Whenever a core fails, the services

assign the critical tasks that were previously assigned to that failed core to the operational

cores. The services may kill and suspend temporarily one or more non-critical tasks on

the operational cores during a reallocation process to ensure enough processing capacity

for the reallocated critical tasks. In Figure 3.1, core core2 fails in system-state s2; in the

next system-state, the periodic execution of critical task W is assigned to a backup core core3

and the periodic execution of non-critical task N3 is suspended temporarily on core3 to have

enough processing capacity for W. A critical task is allowed to execute further on a backup

core only if the primary core is in a failed state. The services kill a critical task on a backup

core (if that task is initialized or released) and cancels the assignment of that task on that

backup core, whenever the primary core recovers from a temporary failure. As an example,

core core2 recovers from a temporary failure in system-state s6, and after that only core2

is assigned to perform critical task W. The services reinstate a suspended non-critical task

as soon as enough processing capacity for that task is regained due to the recovery of a

core from a temporary failure; for example, the periodic execution of non-critical task N3 is

reinstated in system-state s7. The services permanently suspend a non-critical task when it

performs some harmful activities, such as illegal memory access. For instance, non-critical

task N1 performs some harmful activities in system-state s4, and the task is permanently
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suspended in system-state s5.

Problem Statement Given a mixed-criticality system as specified in Definition 3, the

problem is to synthesize a reconfiguration service servicei for each core corei such that

servicei: (i) reacts whenever any other core fails or a core recovers (including corei), or

a non-critical task violates a safety constraint on corei; (ii) at that time servicei may kill,

resume, and suspend any task running on corei; and (iii) as long as corei is in a failure state,

none of its tasks nor servicei executes. All reconfiguration services of a system together

satisfy a property that at all times critical tasks are allocated to operating cores as long as

the CFL limit is observed, and any non-critical task that has violated a safety constraint is

suspended from execution indefinitely.

3.3 Modeling

We construct a timed game model of the system in a way that an unsafe location becomes

reachable when a core exceeds its processing capacity. The model explicitly or implicitly

captures the behaviors of the scheduler, the reconfiguration services, the cores, and the

tasks.

To reduce complexity: (i) we model only a single (central) reconfiguration service for

the whole system, instead of one service per core; (ii) we assume that every non-idle state

of a task requires the worst-case core load of the task on the current core; and (iii) we

abstract away the non-critical tasks. These three assumptions do not prevent synthesis of

a distributed reconfiguration service per core, which will be shown in Section 3.4. Our

model depends on four system parameters: (i) the release period of each task (constants

pS, pW, pD); (ii) the worst-case load of each task on each core, in percent of the processing
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Figure 3.2: Architecture of system1 after adapting abstractions of Section 3.3

capacity of that core (constants lS1, lW1, lD1, lS2, lW2, lD2, lS3, lW3, lD3); (iii) the

worst-case execution time (WCET) of each task on all cores (constants wS, wW, wD); and

(iv) the best-case execution time (BCET) of each task on all cores (constants bS, bW, bD).

Now we illustrate the design process by constructing a concrete model of mixed-

criticality AMP system system1. The main design principle behind this model is to de-

scribe each component of the system in detail as a timed I/O automaton then obtain an in-

tuitive concrete model by composing all the components using parallel composition [95].

The concrete model has 13 timed I/O automata, which follow five different templates. In

general, the concrete model has at most (N × K) + N + 1 timed I/O automata and K + 2

templates, where N is the number of total cores, K is the number of total critical tasks,

constant 1 automaton for the central service, constant 1 template for cores, and constant 1

template for the central service.

Each automaton of the concrete model represents exactly one rectangle of Figure 3.2.

The automata synchronize using both actions and global variables. The model does not

have any local variables and constants. A task automaton models initialization, killing,

resumption, termination, and state information of a task on a specific core; for example,

task automaton core1.S in the bottom of Figure 3.4 represents the activities of task S on

core1. A core may fail only if the fault model allows it to fail. A core automaton models

initializations and terminations of tasks on a core along with failures of the core and safety
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violations; for instance, core automaton core1 in the middle of Figure 3.4 represents the ac-

tivities of core core1. The service automaton in the top of Figure 3.4 models reallocations

of the critical tasks when a core fails or recovers. In the model a failed core may recover at

any time. All automata of the model are presented in the appendix and in a technical report

[232].

The automata modeling cores follow the same template. For instance, automaton core1

uses action kS1 to model the killing of task S on core1 (edge 16 in Figure 3.4), kW1 to

model the killing of task W on core1 (edge 17), kD1 to model the killing of task D on

core1 (edge 18), and global variable L1 to record the current worst-case load on core1

(edges 9–14,16–18); similarly, automaton core2 uses action kS2 to model the killing of

S on core2 and global variable L2 to record the current worst-case load on core2. The

automata modeling the same task—but on different cores—follow the same template.

3.3.1 Task Automata

A task automaton represents two types of activities of a task on a core:

Task Life-Cycle Activities (edges 1–5) Every task can be initialized, killed, and resumed

by performing controllable actions. Task terminations are modeled using uncontrollable ac-

tions because neither the scheduler nor the reconfiguration services can control the exact

termination period of a task. The models are built in Uppaal Tiga [35], which displays con-

trollable transitions as solid arrows (edges 1–4), and uncontrollable transitions as dashed

arrows (edges 5–8). The duration between an initialization and the immediate termination

of a task encompasses one complete execution of that task. A task can be killed and then

resumed arbitrarily many times in a single execution. Initialization, killing, resumption,

and termination of task S on core1 is modeled by performing actions iS1 (edge 1), kS1
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(edges 3–4), rS1 (edge 2), and tS1 (edge 5), respectively. Every task automaton has at

least two locations: Idle and Active. The task is either killed or yet to be initialized in

location Idle. Every non-idle location has an invariant to force the task to terminate within

the WCET; for instance, an automaton modeling task S has invariant x≤wS to force termi-

nation, where global clock x records the amount of time passed since the last initialization

of S and global constant wS stores the WCET of S. Similarly, global constant bS stores the

BCET of task S. Hence, clock guard x≥bS prevents task S to terminate before the BCET

(edge 5).

Task Specific Activities (edges 6–8) Task S records exactly one update of a digital

speedometer (modeled as global variable vS) in an execution: vS represents the speed

in multiples of five varying from zero to hundred. Boolean variable uS is 1 if and only if

the speedometer is updated in the current execution of S.

Task automata core1.W and core1.D in the concrete model is presented in the appendix

and in the technical report [232]. The automata model task life-cycle activities and task

specific activities of tasks W and D.

In general, a timed I/O automaton representing a task (in Definition 3) is transformed

(like Figure 3.3) to a corresponding task automaton by adding controllable transitions to

capture periodic (or cyclic) initialization of the task (by the scheduler), killing by reconfigu-

ration services at all internal states (of interest), and resumption by reconfiguration services

at all internal states (of interest).

3.3.2 Core Automata

A core automaton in the concrete model models two types of activities:
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Figure 3.3: Transformation of a timed I/O automaton representing a task (in Definition 3) to
a task automaton: from single to periodic executions with kill and resumption
at all internal states

Operation-Time Activities (edges 9–14) A core automaton periodically initializes a task

at its release period if the corresponding core is assigned to execute that task. Task termi-

nates voluntarily after completing its assigned functions. A task between its initialization

and termination occupies a portion of the resources. When a task terminates (resp., is ini-

tialized) on a core, the corresponding core automaton decreases (resp., increases) a variable

modeling the current worst-case load. In location Main, task S is initialized by performing

action iS1 (edges 9) if S is assigned to core1 (aS==1), and S is not initialized yet (iS==0),

and clock x hits the value of the release period of S (x==pS). Automaton core1 (edge 14) re-

ceives action tS1 from task automaton core1.S (edge 5) whenever S terminates its execution

on this core. Function terminate(S,1) decreases (resp., initialize(S,1) increases)

variable L1, modeling the worst-case load on core1, by constant lS1, the worst-case load

of task S on core core1, and resets Boolean variable iS to 0 (resp., 1), that means task S

terminates (resp., is initialized).
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Figure 3.4: Automata core1.S (in the bottom), core1 (in the middle), service (in the top)
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Failure-Time Activities (edges 15–22) Core automaton core1 models failures of the core

by traversing an uncontrollable edge. In order to reflect our assumption on the concurrent

failure limit, this edge is only admitted if the number of currently failed cores (F) is less

than CFL (CFL). Location Urgent is reached from Main whenever core1 fails. Urgent is

one of the urgent locations2, denoted as ∪ in Uppaal Tiga syntax, that means the automa-

ton cannot spend time in this location (edges 15–21). When the core fails, the automaton

instantaneously kills all tasks currently released by it—to simulate that no task can con-

tinue to run on a failed core (edges 16–18). Then the automaton instantaneously performs

specific actions to broadcast a message containing the list of currently assigned tasks to that

failed core: performs action mS if S is the only assigned task; action mSW if S and W are the

only assigned tasks; and action mSD if S and D are the only assigned tasks (edges 19–21).

To note that only task W or task D or both cannot be assigned to core core1 without task S

because a task (S) must be assigned to its operational primary core (core1). At runtime, the

reconfiguration services use a distributed monitoring system to identify these (task) assign-

ments because no failed core can broadcast a message. An unsafe location BAD becomes

reachable when the current worst-case load on core1 exceeds the load limit of core1 be-

cause of the failure of some other core(s) (edge 22). This prevents the synthesis algorithm

from producing a strategy that would require illegal loads.

In general, a core automaton in Figure 3.5 is constructed for a core, which is compatible

with K number of critical tasks of the system. The automaton has three locations: Main,

Urgent, and BAD. The initial location Main has K controllable (resp., K uncontrollable)

self-loops to simulate initializations (resp., terminations) of K critical tasks on the core.

Location Urgent is reached from Main when the core fails. At Urgent all the active tasks
2Semantically, urgent locations are equivalent to: adding an extra clock, x, that is reset x := 0 on every

incoming edge, and adding an invariant x <= 0 to the location.



www.manaraa.com

3.3. MODELING 72

Figure 3.5: A core automaton in general

are killed instantaneously by traversing maximum K self-loops. After that Main is reached

instantaneously by broadcasting the assigned critical tasks to the core. There are 2K−J

edges to broadcast all combinations of assigned tasks to the core, where J is the number

of primary critical tasks of the core. However, the number of compatible cores for a task

(resp., K) in an AMP system is typically low. The environment may take the game to

location BAD when the respective core has more load than its load limit.

3.3.3 Service Automaton

A service automaton spends most of its time in observing states waiting for a fault to

occur (or for a core recovery from a temporary failure). The automaton reallocates a task in

two steps: (i) assigns the periodic execution of the task to a suitable operational core, and

(ii) resumes the task on the assigned core if the task was initialized before the reallocation.
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Other than Observing all locations are committed3, denoted as C in Uppaal Tiga syntax.

They model states when reconfiguration decisions are taken, which are expected to be

instantaneous and get precedence even over the urgent transitions of the other automata.

Activities of the automaton can be divided into three groups described in the following.

Handling a Primary Core Failure (edges 23–37) Recall the invariant that an operating

core is always assigned to execute its primary tasks, so in system1 when a core (say core1)

is assigned to execute only one task then it must be a primary task (S). In the model a

failure message is broadcast using an action (e.g., mS, mSW, and mWD) linked to the currently

assigned tasks of the failed core, instead of the name of the core. Therefore, whenever

a core failing with only assignment of the periodic execution of task S (or action mS is

performed) then core1, the primary core of S, must be that failed core. At that point, task

S is reallocated to either core2 or core3. For example, location A1 is reached from location

Observing when core1 fails (edges 23–27); in A1 the target is reallocating S, the primary

task of core1, to core core2 (bottom two outgoing edges) or to core core3 (top two outgoing

edges). Details of reallocation depending on whether the task was initialized (and needs to

be reassigned then resumed) or was yet to be initialized (and just needs to be reassigned).

For instance, to reallocate task S to core2, location Observing is reentered from A1 by: (i)

assigning the periodic execution of S to core2 (aS:=2) if core2 is operational (aW==2) and

Swas yet to be initialized (iS==0), or (ii) assigning the periodic execution of S to core2 and

resuming S on the core (by performing rS2) if core2 is operational and S was initialized

(iS==1).
3A commited location is the same as a urgent location but after reaching a committed location the next

transition must involve an outgoing edge of at least one of the committed locations of the network.
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Handling a Backup Core Failure (edges 38–52) In our example, when a core is as-

signed to execute two critical tasks then one of them must be a backup task of that core;

hence, after such a failure at least two cores concurrently are in their failed states. The fault

model does not allow all cores to fail concurrently. For instance, core1 must be operational

when core2 and core3 are in their failed states; and the executions of tasks W and D have

to be assigned to core1. Location B1 is reached from Observing when a core fails that is

responsible to execute both W and D or when action mWD is received (edges 48–52). Location

C1 is reached from B1 by assigning the periodic execution of W to the only operational core

core1 and resuming W, if necessary (iW==1). Then Observing is reached by assigning the

periodic execution of D to core1 and resuming D, if necessary (iD==1).

Handling a Primary Core Recovery (edges 53–67) The periodic execution of a task

must be assigned to its primary core when it is operational. Therefore, a task must be

reallocated from a backup core to the primary core whenever it recovers from a tempo-

rary failure. The periodic execution of task S can be assigned to a backup core (aS!=1)

only if its primary core core1 is in a failed state. Location G1 is reached from location

Observing when core1 recovers from a failure (edges 53–57). In G1 the controller has two

main choices depending on the initialization condition of the task: S is yet to be initialized

and needs to be only reassigned to its primary core (the bottom outgoing edge); and S is

initialized on a backup core and needs to be killed (the top two outgoing edges) then to be

resumed on the primary core (the outgoing edge from location H1).

In general, the service automaton of Figure 3.6 remains in observing states unless a

core fails or recovers. Reconfiguration services need at least one operational core to run

tasks. In the worst case when a failure occurs, CFL-1 cores are in their failed states (because

if CFL cores had already failed, then no further failure can happen before some of the cores
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Figure 3.6: A service automaton in general

recover). When a task is failing as the last failure admitted by the fault model, there are

2CFL−1 possible subsets of cores from which its currently running task might have been

migrated (so they are backup tasks). Therefore in total N × 2CFL−1 edges are used to match

these situations, where the total number of cores is N. The construction is exponential in

CFL, however usually CFL is much smaller than N. Similarly, the internal edges of core

recoveries depend on CFL and task-core compatibility (load(taski, core j)) relationships.

3.4 Synthesis

We synthesize reconfiguration services in three sequential steps:
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Figure 3.7: Architecture of system1 at runtime

1. Generate a central controller for critical tasks,

2. Construct a distributed controller for each core by exclusively distributing the central

controller, and

3. Synthesize a reconfiguration service for each core by adding its distributed controller

with a constructed monitor to broadcast its health messages and a constructed switch

to suspend and reinstate its non-critical tasks

A reconfiguration service runs on a core, which can fail. Hence, fault tolerance cannot

be achieved using only one central reconfiguration service. We propose for each core to

execute its own reconfiguration service that has three components: a distributed controller

to reallocate critical tasks, a monitoring system to observe the system’s conditions, and a

edge to cancel and reinstate the periodic execution of non-critical tasks. All the distributed

controllers of a system differ from each other—but complement each other in a way that

they all together work similarly with a central controller, which is synthesized by analyzing

the timed game model of Section 3.3. Figure 3.7 presents the architecture of system1 with

the reconfiguration services at runtime.
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3.4.1 Central Controller Synthesis

We perform a controller synthesis for the monolithic model of Section 3.3 against a safety

objective which states that there is a strategy to always avoid locations core1.BAD, core2.BAD,

and core3.BAD. If the property holds, the strategy—which is our central controller—is au-

tomatically synthesized by a timed game solver.

In order to obtain the most fault-tolerant controller possible, we synthesize it for the

maximal concurrent-failures–limit (MCFL), the maximal value of CFL for which such a

controller still exists. We use binary search to find MCFL. If MCFL is zero, no safe con-

troller exists. The higher MCFL implies the better fault-tolerance by the reconfiguration

services. The value of MCFL is strictly bounded by the total number of processing cores.

Consider, for instance, configuration C1 in Table 3.14 where the release period, the WCET,

the BCET of every task is 10, 5, and 4 time units, respectively; the worst-case load of tasks

S, W, and D on core1 (resp., core2, core3) are 60% (resp., 10%, 10%), 45% (resp., 80%,

5%), and 5% (resp., 5%, 85%), respectively. Configuration C1 does not have a controller

for CFL 2. However, there is a controller for CFL 1. Maximal concurrent-failures–limit

for system1 for configuration C1 is 1 because 1 is the maximal value of CFL for which a

controller exists.

3.4.2 Service Synthesis

We synthesize the distributed reconfiguration service of a core by combining its distributed

controller with an embedded monitor and an embedded switch.
4To show clearer impacts of different modeling aspects on the analysis, we picked some imaginary system

configurations instead of some actual system configurations.
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Distributed Controller The functions of the central controller are completely and ex-

clusively distributed into separate controllers for each core. A distributed controller is

responsible for killing, reassignment, and resumption of critical tasks only on its core. A

timed game represents all the possible transitions of the controller. As a result, a timed

game may have non-deterministic choices for the controller. For example, in Figure 3.1

the controller has non-deterministic choices at system-state s4 when only core2 fails and

the other two cores are operational (edges 28–32). A strategy removes non-determinism

for the controller. By directing the controller to take the correct paths, a strategy plays

a crucial role when in the model some paths guarantee satisfaction of a property (say re-

allocating task W to core3 at system-state s5 in Figure 3.1) and some paths do not (say

reallocating W to core1). For example, when core2 fails (edges 28–32) a strategy (or the

central controller) may say, “if the system-state fulfills condition X then

reallocate task W to core3, otherwise to core1”; then the distributed controller

of this portion (edges 28–32) for core3 is “if the system-state fulfills condition

X then reallocate task W to core3”; and the distributed controller of this portion

(edges 28–32) for core1 is “if the system-state does not fulfill condition

X then reallocate task W to core1”. Thus, deriving the distributed controllers from

the central controller is a mechanical process and cannot fail.

Monitor The monitor of a reconfiguration service periodically broadcasts health mes-

sages of the corresponding core. A health message has three parts: (a) name of its core, (b)

currently assigned critical tasks to its core, and (c) currently initialized critical tasks on its

core. A monitor periodically also receives health messages—from the other reconfigura-

tion services—and manipulates received messages. It marks a core as a failed core if two

consecutive health messages of that core are not received. The monitor identifies a core
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recovery when it receives a message from a previously failed core. In the same way, the

monitor detects when the scheduler releases a task and when a task terminates on a core.

Switch A reconfiguration service has a static lookup table and a dynamic lookup table.

The static lookup table lists the worst-case core load of every critical task (of the system)

on this core and of every non-critical task assigned to this core. The dynamic lookup

table keeps updated list of the assigned tasks, temporarily suspended non-critical tasks, and

permanently suspended non-critical tasks. The controllers reallocate critical tasks from a

failed or to a recovered core without considering the existence of non-critical tasks. The

switch of a reconfiguration service (of the targeted core) suspends a set of non-critical tasks

on its core using the lookup tables when the residual capacity on the core is insufficient to

run the newly reallocated task safely. The distributed controllers first take necessary steps

related to primary tasks of the recovered core whenever a core recovers. After that the

switches reinstate the periodic executions of a set of suspended non-critical tasks on each

source core where free processing capacity is revived due to the recovery. The switch

permanently suspends a non-critical task when it breaches safety constraints.

3.5 Manual State-Space Reduction

The scalability of our service synthesis process mostly depends on the central controller

synthesis as the remaining steps are mechanical and cannot fail. The concrete model has

very large state space. For example, configuration C1 in Table 3.1 generates a strategy of

size 290,663 KB in 94.20 seconds for this model when CFL is 1, presented in Table 3.2.

Moreover, for many configurations the solver runs out of memory during analysis, such as,

C3–C5 in Table 3.2. Detailed and monolithic models like the concrete model are easy to
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Figure 3.8: The abstract model(comments are on the left)

construct, understand, and present. However, large state spaces make them a poor choice

for analysis.
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The main purpose of the strategy is to resolve non-determinism among enabled con-

trollable transitions in a way that guarantees satisfaction of the desired property. Hence,

one can abstract away every detail from a timed game model that does not contribute to

the non-determinism (or to the property). For instance, task specific activities and their

non-deterministic updates of the tasks, which do not have any impact on our property, can

be removed from a timed game model of system1. Using such aggressive abstractions we

construct the abstract model of system1. Presented in Figure 3.8, the model has only one

automaton.

The abstract model uses all the modeling abstractions and system parameters of Sec-

tion 3.3. Explicitly it models only task initializations (edges 68–70), task terminations

(edges 71–76), core failures (edges 77–79), core recovery (edges 80–94), and safety vio-

lations (edge 95). Like task killings and resumptions, task initializations and terminations

change the load on a core; thus they play an important role in the required property (or

the safety checking). The invariant is used to release or initialize the tasks periodically.

While a task termination within the WCET is forced by allowing an additional controllable

transition (edges 74–76). Reallocation is a function which combines task killings, reas-

signments, and resumptions (edges 77–94). The model uses nine Boolean variables aS1,

aW1, aD1, aS2, aW2, aD2, aS3, aW3, and aD3 to keep track the currently assigned tasks to

cores: the value of aS1 (resp., aW1, aD1) is 1 when the periodic execution of task S (resp.,

W, D) is assigned to core core1, otherwise the value is 0; similarly, aS2 (resp., aW2, aD2) is

1 if and only if the periodic execution of task S (resp., W, D) is assigned to core core2. If

both the concrete model and the abstract model use a variable or constant, it is used for

the same purpose; for example, variable iS in both the models is used to identify when task

S is initialized.
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Figure 3.9: The abstract model in general

In general, the abstract model (in Figure 3.9) combines all automata of the concrete

model into a single automaton. In both models, one clock per task is used for the execution

times, and the worst-case loads have been used. A task can be killed and resumed at any

internal states, and the internal control behaviors of a task cannot be effected by other tasks

(see Definition 3). Therefore, internal executions of the tasks can be abstracted away by

only tracking task assignments along with task initializations—which is actually done in

the abstract model. The abstract model hides communications among automata of the

concrete model but keeps their effects. For example, in a core automaton (in Figure 3.4 or

in Figure 3.5) when the core fails, all the initialized tasks on the core are instantaneously

killed by sending kill messages to the corresponding task automata and instantaneously
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broadcast the assignments to the service automaton; the abstract model simulates core

failures and hides the following two communication steps (but performs necessary changes

in the variables). Similarly, task killing and resumption related communications in the

concrete model between the service automaton and a task automaton abstracted away in the

abstract model. The abstract model also hides obvious details of the concrete model. For

example, in service automaton (in Figure 3.4) to reallocate, an initialized task is (reassigned

and then) resumed and an uninitialized task is only reassigned; the abstract model (in

Figure 3.8) models only task reallocations (and hides the other details of resumptions and

reassignments). Therefore, a strategy extracted from the abstract model can be used for

the concrete model by augmenting these communications and obvious details.

For the control problem described in this chapter, we constructed four different models:

the concrete model as described in Section 3.3, the abstract model as described in this

section, the monolithic model, and the compositional model. The last two models are

presented in Chapter 4. We analyze these models with many configurations. This section

discusses behaviors of the concrete and abstract models for 20 configurations of Table 3.1.

All the analyses and controller syntheses were performed by Uppaal Tiga-0.17 on a PC

with an Intel Core i3 CPU at 2.4 GHz, 4 GB of RAM, and running 64-bit Windows 7. We

compare the concrete and abstract models with respect to controller synthesis time and

the strategy size. Uppaal Tiga(-0.17) generates the same (size of) strategy for the same

configuration on the same machine. Controller synthesis time, on the contrary, varies a

little for the same configuration on the same machine. Therefore, we synthesize a strategy

for every configuration multiple times, and then take the average synthesis time for each

configuration.

Experimental results of the concrete and abstract models are presented in Table 3.2.
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Con- Period WCET BCET Load on Load on Load on
fig- of of of core1 of core2 of core3 of
ura- task task task task task task
tion S W D S W D S W D S W D S W D S W D
C1 10 10 10 5 5 5 4 4 4 60 45 5 10 80 5 10 5 85
C2 10 10 10 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85
C3 10 15 20 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85
C4 10 15 20 5 5 5 0 0 0 60 35 5 10 80 5 10 5 85
C5 10 15 20 5 5 5 0 0 0 43 37 7 11 67 19 23 13 59
C6 10 15 20 5 5 5 0 0 0 43 37 59 11 67 39 23 13 59
C7 10 15 20 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C8 10 15 30 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C9 10 20 30 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33

C10 11 19 31 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C11 5 7 11 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C12 5 7 11 5 3 2 0 0 0 33 33 33 33 33 33 33 33 33
C13 5 7 11 5 3 2 5 3 2 33 33 33 33 33 33 33 33 33
C14 10 15 20 5 5 5 5 5 5 33 33 33 33 33 33 33 33 33
C15 10 15 20 5 7 11 5 7 11 33 33 33 33 33 33 33 33 33
C16 10 15 20 5 7 11 0 0 0 33 33 33 33 33 33 33 33 33
C17 10 15 20 7 7 7 7 7 7 33 33 33 33 33 33 33 33 33
C18 10 15 20 5 7 7 5 7 7 33 33 33 33 33 33 33 33 33
C19 10 15 20 7 7 11 7 7 11 33 33 33 33 33 33 33 33 33
C20 10 15 20 9 13 19 9 13 19 33 33 33 33 33 33 33 33 33

Table 3.1: Different configurations: combinations of release period, WCET, and BCET
have abstract time units; and loads are in % of the respective core

We have the following six observations from this table:

1. The abstract model improves the scalability dramatically for every configuration of

Table 3.1. Other than aggressive abstraction, it encodes the whole model into only

one automaton to avoid parallel composition, because parallel composition typically

increases the size of the state space rapidly.

2. The larger the difference between WCET and BECT the longer the analysis time, and

the sparser the strategy. Consider, for example, configuration C1 versus configuration

C2, C7 versus C14, C12 versus C13, and C15 versus C16.
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Configurations CFL Comparison
of concrete model abstract model

Table 3.2 time size time size

C1 2 No controller exists
1 94.20 290663 0.08 73

C2 2 No controller exists
1 115.71 296524 0.11 107

C3 2 No controller exists
1 Out of memory 0.14 242

C4 2 Out of memory 0.25 712
1 0.14 266

C5 2 Out of memory 0.25 712
1 0.14 266

C6 2 No controller exists1

C7 2 Out of memory 0.25 712
1 0.14 266

C8 2 Out of memory 0.15 420
1 0.11 159

C9 2 Out of memory 0.22 632
1 0.14 234

C10 2 Out of memory 178.54 40668
1 73.32 14647

C11 2 Out of memory 4.91 6274
1 1.65 2277

C12 2 Out of memory 4.07 6272
1 1.65 2275

C13 2 Out of memory 1.93 3639
1 0.81 1332

C14 2 Out of memory 0.20 539
1 0.14 204

C15 2 Out of memory 0.15 431
1 0.11 164

C16 2 Out of memory 0.24 718
1 0.14 270

C17 2 Out of memory 0.16 458
1 0.12 173

C18 2 Out of memory 0.16 485
1 0.10 184

C19 2 Out of memory 0.14 406
1 0.10 154

C20 2 Out of memory 0.14 358
1 0.09 135

Table 3.2: Comparisons of the concrete and abstract models with respect to controller
synthesis average time (in seconds) and the strategy size (in kilobytes)
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3. The smaller the least common multiples of release periods the smaller state space,

the shorter analysis time, and the more compact strategy. Consider, for example, C2

versus C3, C8 versus C9, C9 versus C10, C10 versus C11, and so forth. For con-

figurations C10 and C11, we use three different prime numbers as release times to

get large least common multiples of the release times. As a result, for these con-

figurations, we have sparse strategies along with long synthesis times even for the

abstract model. One should check the least common multiples of the release times of

a system before trying to (model and) synthesize controller for it using timed games.

Unfortunately, timed games-based analytical tools are currently not mature enough

to synthesize scheduler for practical systems having large least common multiples of

the release times.

4. On the other hand, the least common multiples of the execution times have no visible

impact on the analysis time or the size of the strategy; (for instance, C14 versus C15,

C15 versus C17, C17 versus C18, C18 versus C19, C19 versus C20, and so forth).

5. Variations in the least common denominator of non-clock variables, such as different

loads, do not have any significant impact on the analysis; (for example, C4 versus C5

and C5 versus C7).

6. Uppaal Tiga takes less time and generates a smaller strategy for a higher value for

CFL; (for instance, configurations C4, C5, C7, C8, C9, C10, C11, C12, C13, C14,

C15, C16, C17, C18, C19, and C20.)

Probably, the first observation is the most important one, which states that the scalability

improves in the abstract model. Table 4.2 in Chapter 4 shows that the above observations

are also true for the monolithic model and the compositional model.
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The MCFL of system system1 depends on its configuration and model:

• For the concrete model

– The MCFL is unknown for configurations C3, C4, C5, C7, C8, C9, C10, C11,

C12, C13, C14, C15, C16, C17, C18, C19, and C20;

– The MCFL is 1 for configurations C1 and C2; and

– The MCFL is 0 for configurations C6.

• For the abstract model

– The MCFL is 2 for configurations C4, C5, C7, C8, C9, C10, C11, C12, C13,

C14, C15, C16, C17, C18, C19, and C20;

– The MCFL is 1 for configurations C1, C2, and C3; and

– The MCFL is 0 for configurations C6.

3.6 Discussion

A mixed-criticality system has two or more criticality-levels, where each level may have

its own control objectives. Usually current industrial safety standards identify up to five

criticality-levels in a system. For example, automotive functional safety standard ISO

26262 divides an automotive system into five criticality-levels: one non-safety criticality-

level and four safety criticality-levels (ASIL A, ASIL B, ASIL C, and ASIL D). The success

of a higher criticality unit cannot depend on its lower criticality units but the success of a

lower criticality unit may depend on higher criticality units. For example, if the periodic

execution of critical task S depends on the execution of non-critical task N1 then N1 must be

a critical task.
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Figure 3.10: Divide and serially conquer strategy for the synthesis of mixed-criticality con-
trollers
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Until now this chapter only presented an application of our developed divide and seri-

ally conquer strategy for a specific and simple case-study, where the control problem for

critical tasks is solved first and then the control problem for non-critical tasks is solved.

Now we briefly discuss the strategy for the synthesis of general mixed-criticality con-

trollers. Figure 3.10 shows our proposed and applied divide and serially conquer strategy.

It divides a mixed-criticality controller synthesis problem into multiple controller synthe-

sis problems. Moreover, the strategy suggests the synthesis of a controller of a higher

criticality-level before solving control problems of a lower criticality-level.

In this chapter we solve “synthesize a controller to ensure that the critical tasks of

system system1 execute uninterruptedly and the non-critical tasks execute according to

available resources in the presence of faults of a given fault model”, which we divided into

two control problems. First we solve “synthesize a controller to ensure that the critical tasks

of system system1 execute uninterruptedly in the presence of faults of a given fault model”

then include the synthesized controller along with the critical tasks to solve “synthesize a

controller to ensure that the non-critical tasks execute according to available resources in

the presence of faults of a given fault model”.

We briefly discuss the handling of systems with slightly different properties. For sys-

tems with asymmetric cores, which are unable to execute some tasks on some of the cores,

we simply do not model the initialization, termination, killing, reassignment, and resump-

tion for the illegal combinations of tasks and cores. For symmetric multi-core processing

(SMP) one simply has to set the same load parameters on all the cores for each task. The

synthesized reconfiguration services are oblivious to the tasks having substructure (sub-

tasks), if they can be consistently abstracted by a single set of parameters (WCET, BCET

and load).
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We have assumed that an initialized task reallocated from a failed core should resume

in the same state. If this is not required, i.e., a task can start from initial state on the

new core at its next release period, then the model can be simplified, by removing the

edges modeling resumption. We have not investigated the synthesis process for a scheduler

with a dynamic allocation yet. In the next chapter, we present a theoretical framework

for dynamic hierarchical open systems (such as system system1) having any numbers of

control hierarchies. The framework supports an automated state space reduction technique

to allow timed games-based analysis for industrial dynamic hierarchical open systems.
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Chapter 4

Timed Process Automata

This chapter develops a model for the automated analysis of safety and reachability prop-

erties in industrial time-critical systems. To fulfill industrial requirements, we consider

time-critical systems that are open (communicate with external components), hierarchical

(can be decomposed and recomposed into smaller control systems), and dynamic (the de-

composition can change over time). In the chapter, we use real-time systems, meaning

time-critical systems that fulfill all these features. The model also facilitates compositional

modeling with reuse for different contexts.

An open system continuously interacts with an unpredictable environment. A good

example of open time-critical systems is a pacemaker, which continuously interacts with

a heart, an uncontrolled environment. The pacemaker’s performance crucially depends on

the exact timing of an action performed either by the system or by the environment. The

theory of timed games [190, 4, 100, 95] is well-known in the research community for the

analysis of open real-time systems.

A hierarchical system is a hierarchical composition of smaller systems. An automotive

system, developed by an original equipment manufacturer (OEM), may be used in different

models of cars. In this case, the system has a controller which helps the system adapt to
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different environments and cars. In other words, the system is an open system, which has

two distinguished interacting segments: the controller and the environment. Typically,

these systems consist of other smaller systems in a hierarchical structure. For instance, a

system Actuator can be a component of a larger system Position, while Position can be a

component of another system Brake-by-Wire, and so on. Every component of a system has

a specific set of tasks; for example, system Brake-by-Wire may use its component Position

to perform some desired tasks in interaction with the environment, and Brake-by-Wire may

also indirectly—through using Position—use its sub-component Actuator to perform some

desired tasks in interaction with the environment.

A dynamic hierarchical system is a hierarchical system whose components may change

over time. Many hierarchical systems have dynamic characteristics, which are activating

components only when needed. Dynamic behaviors are an important feature when resource

constraints (such as limited memory) do not allow one to keep all the components active at

the same time. Sometimes dynamic behaviors are inherent to the system. For example, we

applied timed game theory in an industrial project to construct a fault-tolerant framework

for a hierarchical open system that has a scheduler, a set of tasks, and a set of subtasks;

only the scheduler is active in the initial system-state; subtasks are activated by their parent

tasks, and the top level tasks are activated by their scheduler; thus the scheduler controls

tasks, and a task controls its subtasks; due to the termination or the initialization of tasks

(or subtasks) the structures of the processes may change; thus the system is a dynamic open

system [233].

Modeling techniques, automated analyses, and other key issues of timed automata are

typically addressed for static closed systems. The application domain of timed automata
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is growing [230]. In our two projects with an automotive manufacturer, we used differ-

ent timed automata-based analyses to investigate the fault-tolerance of real-time systems,

which are part of many large-scale safety-critical systems. During our industrial projects,

we observed that continuous-time formal methods of timed automata may provide the most

accurate analysis; however, timed automata are not suited for industrial real-time systems

mainly because of poor scalability. Moreover, we found that timed automata may intro-

duce cumbersome design details in a large-scale real-time system having several control

hierarchies. This chapter extends timed automata to achieve better modeling support and

scalability for automated analysis of hierarchical open real-time systems.

We propose timed process automata, a variant of timed automata, for the development

of industrial hierarchical open real-time systems. The proposed variant provides composi-

tional modeling with reuse for three different contexts and automatable analysis—a system

needs to be modeled and analyzed using timed process automata only once when copies of

it are used as independent systems or multiple components of a larger system or compo-

nents of different larger systems or a combination of all previous scenarios. The contribu-

tions of this chapter include:

1. Timed process automata, the first variant of timed automata that provides composi-

tional modeling with reuse.

2. Definition of a formal semantics for timed process automata.

3. An automatable analysis for safety and reachability properties of timed process au-

tomata.

4. The first automatable state-space reduction technique for time-critical systems, which

can be dynamic, hierarchical, and open.
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The rest of the chapter can be divided into six sections:

Section 4.1 Describes the motivation for the work. The motivation is based on the experi-

ence achieved from a couple of automotive industrial projects, which are described

in the previous chapters.

Section 4.2 Provides the required background to understand the chapter.

Section 4.3 Presents the syntax (Section 4.3.1) and the semantics (Section 4.3.2) of timed

process automata, which use start actions, finish actions, final locations, and channels

to facilitate compositional modeling to reuse designs without manual alterations.

Section 4.4 Presents an automatable analysis technique—based on timed games—for timed

process automata. The analysis model of a timed process automaton T is constructed

by composing a finite number of timed I/O automata [156, 4, 95], a variant of timed

automata, to mimic the execution of T . The analysis model is constructed using an

automatable technique that allows the designer to avoid manual alteration techniques

for different compositions. Other than the automatable construction, the constructed

analysis models essentially are timed I/O automata models, whose state spaces are

too large to analyze industrial real-time systems.

Section4.5 Develops an automatable state-space reduction technique for timed process

automata that converts each callee process into a small automaton having only two

locations and two edges, irrespective of the size of the callee. The technique uses

structured construction of timed process automata, compositional reasoning, aggres-

sive abstractions, and fewer synchronizations to ensure a smaller state space.

Section 4.7 Discusses related work. It also classifies timed process automata depending

on the classification of timed automata variants presented in Chapter 2 and in [230].
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4.1 Motivation

The first goal of the chapter is to develop a real-time model, where a designer will not

need to readjust a design for different compositions. The second and main goal is to allow

automated analysis of the model for industrial systems.

Figure 4.1 presents an abstract Brake-by-Wire system modeled using timed I/O au-

tomata, and the system is developed by an OEM. The model has seven automata represent-

ing different copies of only three elements: one copy of the main thread of Brake-by-Wire

(the top automaton), two copies of the main thread of Position (the two automata in the

middle), and four copies of Actuator system (the four automata in the bottom). Each Po-

sition system contains two children (Actuator systems) and its main thread that schedules

the children, communicates with its parent (the main thread of Brake-by-Wire), and per-

forms some other functions, which cannot be performed by the children. Similarly, this

Brake-by-Wire system contains two children (Position systems) and its main thread that

schedules the children and performs some other functions, which cannot be performed by

the children. In this model, the main thread of Brake-by-Wire is the root, which does not

have a parent. However, in the future a car manufacturer may include this Brake-by-Wire

system in a car and then the main thread of Brake-by-Wire will no longer be the root. Then

a central control system may be able to start the main thread of Brake-by-Wire. To analyze

the new complex system, a designer will need to manually alter the model again by includ-

ing start and finish actions (in the top automaton of Figure 4.1). Let us assume a complex

system contains N Break-by-Wire systems; to analyze this complex system, a designer will

need to manually construct at least N ×7 automata with a proportionally growing alphabet!

Existing timed automata-based modeling techniques do not support compositional model-

ing with reusable designs for different contexts; that is, a design may need to be altered
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Figure 4.1: An abstract Brake-by-Wire system modeled using standard timed I/O automata,
where one copy of the main thread of Brake-by-Wire (the top automaton), two
copies of the main thread of Position (the two automata in the middle), and
four copies of Actuator system (the four automata in the bottom)

manually in every composition. All these ad hoc alterations may make a large industrial

design incomprehensible and error-prone.

Figure 4.2 contains the same Brake-by-Wire system of Figure 4.1 modeled by using
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Figure 4.2: The same Brake-by-Wire system of Figure 4.1 is modeled using timed process
automata

timed process automata. Timed process automata always model a system only once. For

example, Figure 4.2 presents only three timed process automata, which are equivalent to

the seven automata of Figure 4.1. Moreover, the number of copies and the root status of

Break-by-Wire system has no impact on the new design.

No automated state-space reduction technique has been developed for the analysis of

dynamic hierarchical open dense-time systems. During our two projects with an automotive

manufacturer, we noticed that even a (practically) very small real-time system may have a

state space too large for automated formal analysis because of hierarchy, dynamic behav-

iors, and time calculations. We overcame the scalability problem in one of the projects—

construction of a fault-tolerance framework in Chapter 3 and in [233]—by developing a

manual state-space reduction technique that applies aggressive abstractions and uses fewer

synchronizations. Applying this manual technique to a design of an industrial system is

a challenging task. A generalized automated reduction technique, therefore, is needed for

analysis of dynamic hierarchical open time-critical systems, which is provided in this chap-

ter by presenting an automatable reduction technique for timed process automata.
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4.2 Background

The semantic construction of timed automata is expressed using semantics objects called

timed transition systems [139, 95, 15]. A timed I/O automaton [156, 4, 95] is a timed

automaton which has an input alphabet along with a regular output alphabet. The con-

troller plays controllable output transitions and the environment plays uncontrollable input

transitions; thus timed I/O automata are a natural model for timed games. Two timed I/O

automata are composable with each other if they do not have a common output action. This

section defines timed transition systems, timed I/O automata, composition of timed I/O

automata, and all other terms required to understand the remaining chapter.

Definition 4. [139, 95, 15] A timed transition system (with only one initial location but

without final location and ε-transition) is a tuple T = (St, s0,Σ,d), where St is a set of

states, s0 ∈ St is the initial state, Σ is an alphabet, andd: St × (Σ∪R≥0)× St is a transition

relation.

We use d ∈ R≥0 to denote delay. A timed transition system satisfies time determinism

(i.e., whenever s
d
d s′ and s

d
d s′′ then s′ = s′′ for all s ∈ S ), time reflexivity (i.e., s

0
d s

for all s ∈ S ), and time additivity (i.e., for all s, s′′ ∈ S and all d1, d2 ∈ R≥0 we have

s
d1+d2
d s′′ iff there exists an s′ such that s

d1
d s′ and s′

d2
d s′′). A run ρ of a timed transition

system T from a state s1 ∈ St is a sequence s1
a1
d s2

a2
d s3 · · ·

an
d sn+1 such that for all

1 ≤ m ≤ n : sm
am
d sm+1 with am ∈ Σ ∪ R≥0. A state s is reachable in a transition system

T if and only if there is a run s0
a0
d s1

a1
d s2 · · ·

an−1
d sn, where s = sn. Timed I/O transition

systems are timed transition system with input and output modalities on transitions. Timed

I/O transition systems are used to define semantics of timed I/O automata.

A clock is a non-negative real variable. A constraint δ ∈ C(X,V) over a set of clocks X

and over a set counters, non-negative finitely bounded integer variables, V is generated by
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the grammar δ F xm ≺ q | k ≺ α | xm − xn ≺ q | true | Φ ∧ Φ, where q ∈ Q≥0, α ∈ Z≥0,

{xm, xn} ⊆ X, k ∈ V and ≺∈ {<,≤, >,≥}. Consequently, the set of clock constraints C(X) is

the set of constraints C(X,V), where V = ∅. Let Ψ(V) be the set of assignments over the set

of variables V .

Definition 5. [156, 4, 95, 15] A timed I/O automaton is a tuple A = (L, l0, X,V, A, E, I),

where L is a finite set of locations, l0 ∈ L is the initial location, X is a finite set of clocks,

V is a finite set of counters, A = Ai ⊕ Ao is a finite set of actions, partitioned into input

actions Ai and output actions Ao, E ⊆ L × A × Φ(X,V) × Ψ(V) × 2X × L is a set of edges,

and I : L→ C(X) is a total mapping from locations to invariants.

A clock valuation over X is a mapping RX
≥0 : X → R≥0 and a counter valuation over

V is a mapping ZV
≥0 : V → Z≥0. Given a clock valuation v ∈ RX

≥0 and d ∈ R≥0, we write

v + d for the clock valuation in which for each clock x ∈ X we have (v + d)(x) = v(x) + d.

For λ ⊆ X, we write v[x 7→ 0]x∈λ for a clock valuation agreeing with v on clocks in X \ λ,

and giving 0 for clocks in λ. For φ ∈ Φ(X,V), v ∈ RX
≥0, and n ∈ ZV

≥0, we write v, n |= φ if

v and n satisfy φ. Let e = (l, a, φ, θ, λ, l′) be an edge, then l is the source location, a is the

action label, and l′ is the target location of e; the constraint φ has to be satisfied during the

traversal of e; the set of clocks λ ∈ 2X are reset to 0 and the set of counters are updated to θ

whenever e is traversed.

Definition 6. [4, 95] Two timed I/O automataAm = (Lm, lm
0 , X

m,Vm, Am, Em, Im) andAn =

(Ln, ln
0, X

n,Vn, An, En, In) are composable with each other when Am
o ∩ An

o = ∅, Xm ∩ Xn = ∅,

and Vm ∩ Vn = ∅; when composable, their composition is a timed I/O automaton A =

Am||An = (Lm×Ln, (lm
0 , l

n
0), Xm∪Xn,Vm∪Vn, A, E, I), where A = Ai∪Ao with Ao = Am

o ∪An
o

and Ai = (Am
i ∪ An

i ) \ Ao. The set of edges E contains:
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• ((lm, ln), a, φm ∧ φn, λm ∪ λn, θm ∪ θn, (l′m, l′n)) ∈ E for each (lm, a, φm, θm, λm, l′m) ∈ Em

and (ln, a, φn, θn, λn, l′n) ∈ En if a ∈ {Am
i ∩ An

o} ∪ {A
m
o ∩ An

i }

• ((lm, ln), a, φm, λm, θm, (l′m, ln)) ∈ E for each (lm, a, φm, λm, θm, l′m) ∈ Em if a < An

• ((lm, ln), a, φn, λn, θn, (lm, l′n)) ∈ E for each (ln, a, φn, λn, θn, l′n) ∈ En if a < Am

and the set of invariants I is constructed as follows: I(lm, ln) = Im(lm) ∧ In(ln)

4.3 Processes

Timed process automata model processes in a way that each process is a dynamic hierarchi-

cal open time-critical system, which we simply call real-time system in this chapter. Every

process hierarchically contains its active callee processes. Thus the control of a process is

hierarchically shared with its active callee processes. The main thread of a process can acti-

vate callee processes via communication channels. An active process can receive any input

in any state. An active callee process can deactivate itself in any state of the main thread

of its caller process. An activated callee process terminates within its worst-case execution

time. This section presents the syntax and the semantics of timed process automata.

4.3.1 Timed Process Automata

Timed process automata are a variant of timed I/O automata. Unlike a timed I/O automaton,

a timed process automaton has a finite set of start actions As, a finite set of finish actions

Af, a final location lf, and a finite set of channels C.

The set of actions A = Ai ⊕ Ao ⊕ As ⊕ Af of a timed process automaton is a disjoint

union of finite sets of input actions Ai, output actions Ao, start actions As, and finish actions

Af. For every set of actions A, there exists a bijective mapping between its start actions As
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and finish actions Af in such a way that for each start action sN ∈ As there is exactly one

finish action fN ∈ Af, and vice versa. These actions can be used for starting and finishing

processes associated with N. We use s and f with the name N (of another timed process

automaton) as a subscript index (e.g., sN and fN) to denote a start action and a finish action,

respectively. We use the same subscript to indicate paired actions. We write a to denote an

action in general. Processes synchronize via instantaneous channels. Each timed process

automaton uses the same designated symbols for its public channel (∗) and caller channel

(4). We use c to denote a channel in general.

Definition 7. A timed process automaton is a tuple T = (L, l0, X, A,C, E, I, lf), where L

is a finite set of locations, l0 ∈ L is the initial location, X is a finite set of clocks, A =

Ai ⊕ Ao ⊕ As ⊕ Af is a finite set of actions as described above, C is a finite set of channels,

E ⊆ (L × A × C \ {4, ∗} × Φ(X) × 2X × L) ∪ (L × (Ai ∪ Ao) × {4, ∗} × Φ(X) × 2X × L) is a

set of edges, I : L → Φ(X) is a total mapping from locations to invariants, and lf ∈ L is

a designated final location which does not have any outgoing edges to other locations and

has the invariant I(lf) = true.

Figure 4.2 presents timed process automata Brake-by-Wire, Position, and Actuator. In

the figure, each initial location has a dangling incoming edge, final locations are filled with

black, and timed process automata names are underlined. The final location lf of a timed

process automaton may be unreachable from the initial location (and then lf is not shown

in the figure).

4.3.2 Process Executions

Every instance of a timed process automaton is a process. Two processes of the same timed

process automaton represent two different copies of the same system. Every process has



www.manaraa.com

4.3. PROCESSES 102

a unique process identifier. A process is a tuple P = (id(P), tpa(P), channel(P)), where

id(P)1 is the process identifier, timed process automaton tpa(P) defines the execution logic,

and caller channel channel(P) is the private channel to communicate with the caller and

the other processes which are started via the same channel. A process Q is a callee of P if P

is the caller of Q. We use ⊥ to denote the caller channel of the root process. Every process

P of tpa(P) = (L, l0, X, A,C, E, I, lf) has its own copy P.c of channel c ∈C. We write P.c.a

meaning that action a is performed via channel P.c.

At the same time, no two processes of the same timed process automaton can have

the same caller channel. A process P, therefore, may have at most | C | × | As | active

callee processes. For example, an instance of automaton Brake-by-Wire of Figure 4.2 can

activate at most two instances of automaton Position of Figure 4.2 at the same time via two

different channels front and rear, where the instance of Brake-by-Wire is the caller process

of the two instances of Position, which are the callee processes of the instance of Brake-

by-Wire. A subprocess is a callee or a callee of a subprocess, recursively. For example,

every instance of Brake-by-Wire has six subprocesses: two instances of Position and four

instances of automaton Actuator of Figure 4.2. Every process hierarchically contains all

of its subprocesses. Two processes are siblings if they have the same caller channel. The

caller can use separate channels to differentiate control over different callees, even if they

are processes of the same automaton.

A process P starts a process Q of an automaton tpa(Q) via channel P.c by traversing an

edge e1 = (_, stpa(Q), c, _, _, _) labeled by a start action stpa(Q) if there exists no active process

of tpa(Q) with caller channel P.c; dually, P traverses an edge e2 = (_, ftpa(Q), c, _, _, _)

labeled by the paired finish action ftpa(Q) whenever Q reaches its final state. No edge labeled

by ftpa(Q) will ever be traversed if tpa(Q) is a non-terminating timed process automaton.
1To avoid clutter, we abuse notation by writing P instead of id(P).
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Correspondingly, note that existing processes may start different processes of tpa(Q)—but

always with different process identifiers. However, only P listens to finish action ftpa(Q)

via channel channel(Q). Process P traverses an edge e = (_, a, c, _, _, _) when P receives

(respectively, sends) an input (resp., output) a in channel P.c. Process P communicates

with its callee Q via channel(Q) and with the environment via channel P.∗.

We formalize the above mechanics of execution by first giving the semantics of the

main thread of the process, ignoring its subprocesses in Definition 8 and then giving the

semantics of the entire process in Definition 15. The standalone semantics of a process

are essentially the same semantics as a standard timed I/O automaton [15, 156, 4, 95].

The main difference is that states are decorated with process identifiers and edges with

channel names to distinguish different instances of the same timed process automaton in

Definition 15. Also the caller channel 4 is instantiated for an actual parent process. The

technical reason for this will become apparent in Definition 15.

Definition 8. The standalone semantics S~P� of a process P = (P, tpa(P), channel(P))

is a timed I/O transition system S~P� = (L × RX
≥0 × P, (l0, 0, P), AP,−�)2, where tpa(P) =

(L, l0, X, A,C, E, I, lf), 0 is a function mapping every clock to zero and −�⊆ (L×RX
≥0×{P})×

(AP ∪ R≥0) × (L × RX
≥0 × {P}) is the transition relation generated by the following rules:

Action For each clock valuation v ∈ RX
≥0 and each edge (l, a, c, φ, λ, l′) ∈ E such that v |= φ,

v′ = v[x 7→ 0]x∈λ, and v′ |= I(l′) we have (l, v, P)
P.c.a
−−� (l′, v′, P) if c , 4, otherwise

(l, v, P)
channel(P).a
−−−−−−−−−−� (l′, v′, P)

Delay For each clock valuation v ∈ RX
≥0 and for each delay d ∈ R≥0 such that (v + d) |= I(l)

we have (l, v, P)
d
−� (l, v + d, P).

2AP is the set of actions where action names are constructed using regular expression (P“.”C |

channel(P))“.”A.
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Theorem 1. The transition system induced by the standalone semantics of a process is time

deterministic, time reflexive, and time additive

Proof. The Action transition rule does not allow hidden or internal transition. All non-

action and delay related state changes, thus, occur according to the Delay transition rule.

From this rule we can derive:

• The only state that can be reached from state (l, v, P) after delaying d ∈R time units

is (l, v + d, P),

• The only state that can be reached from state (l, v, P) after delaying 0 time unit is

(l, v, P), and

• For any two delays d1 ∈ R and d2 ∈ R, the only state that can be reached from state

(l, v, P) after delaying d1 and d2 time units is (l, v + d, P) when d1 + d2 = d.

Therefore, the transition system induced by the standalone semantics of a process is time

deterministic, time reflexive, and time additive. �

Definition 9. Ground timed process automata are timed process automata that cannot per-

form a start or finish action (As ∪ Af = ∅).

Automaton Actuator in Figure 4.2, for instance, is a ground timed process automaton.

Definition 10. Compound timed process automata are timed process automata that can

perform a start or finish action (As ∪ Af , ∅).

For example, Brake-by-Wire and Position in Figure 4.2 are compound timed process au-

tomata.

Definition 11. A well-formed channel cannot be used by two processes sharing an output

action.
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Definition 12. Processes of a well-formed timed process automaton have only well-formed

channels.

Definition 13. Non-recursive timed process automata are defined inductively using the

following rules:

• Every ground timed process automaton is a non-recursive timed process automaton,

and

• A compound timed process automaton which performs only those start and finish

actions whose subscripts are the names of some other existing non-recursive timed

process automata is a non-recursive timed process automaton.

All three automata in Figure 4.2, for example, are non-recursive timed process automata.

A process of a non-recursive timed process automaton hierarchically contains only a finite

number of subprocesses. The caller may activate an idle process, iteratively. Thus a pro-

cess may activate a subprocess an arbitrary number of times. In this chapter, we are only

concerned with non-recursive well-formed timed process automata.

A standalone final state of a process P is (lf, v, P), where v is any clock valuation. We

use stP, stP
0, cP, and stP

f to denote a standalone state, the standalone initial state, the set of

channels, and a standalone final state of process P, respectively.

Definition 14. We say that a process P is A′-enabled for a channel P.c if for every reachable

standalone state stP we have stP P.c.a
−−� st′P for some standalone state st′P for each action

a ∈ A′.

We require that each process P is Ai-enabled (input enabled) for all channels of P, and Af-

enabled (finish enabled) for all channels of P other than channels P.4 and P.∗ to reflect the
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phenomenon that inputs from the environment and the deaths of callees are independent

events, beyond the control of a process. We present the semantics of a process in the

following:

Definition 15. The global operational semantics G~P� (semantics ~P� for short) of a pro-

cess P = (P, tpa(P),⊥) are a timed I/O transition system G~P� = (2s, s0,P × C × A,→),

where s is the set of all the standalone states of all the processes in the universe, tpa(P) =

(L, l0, X, A, E, I, lf), s0 = {stP
0 } is the initial state, P is the set of all the processes in the

universe, C is the set of all the channels in the universe, A is the set of all the actions in the

universe, and→⊆ 2s × (P × C × A ∪ R≥0) × 2s is the transition relation generated by the

following rules:

stQ Q.c.sT
−−−−� st′Q and c < {4, ∗} {stW ∈ s | channel(W) = Q.c and tpa(W) = T } = ∅

stQ ∈ s (R,T,Q.c) is a freshly started process

s
Q.c.sT
−−−−−→ {s \ {stQ}} ∪ {stR

0 , st′Q}
Start

stR
f , stQ ∈ s and channel(R) = Q.c

{stU ∈ s | channel(U) ∈ CR} = ∅ stQ Q.c.ftpa(R)
−−−−−−−−� st′Q

s
Q.c.ftpa(R)
−−−−−−−→ {s \ {stR

f , stQ}} ∪ {st′Q}
Finish

s′ = {st′Q | stQ d
−� st′Q and stQ ∈ s and (stQ , stQ

f or |s| = 1)} |s| = |s′|

s
d
−→ s′

Delay

a <
⋃

stQ∈s Atpa(Q)
o s′ = {stQ ∈ s | stQ Q.∗.a

−−−� st′Q}

s
a
−→ {s \ s′} ∪ {st′Q | stQ Q.∗.a

−−−� st′Q and stQ ∈ s}
Input
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stQ W.c.a
−−−� st′Q and a ∈ AQ

o and stQ ∈ s

s′ = {stR ∈ s | stR W.c.a
−−−� st′R and W.c is a channel}

s
Q.c.a
−−−−→ {s \ s′} ∪ {st′R | stR W.c.a

−−−� st′R and stR ∈ s}
Output

A global state is a set which holds standalone states of all active processes. The Start

rule states that the initial standalone state of a freshly started callee is added to the global

state whenever the corresponding start action is performed by its caller. The rule also states

that no two active processes can have the same timed process automaton and the same caller

channel. The Finish rule prescribes that the standalone-final state of a callee is removed

from the global state and the caller executes the corresponding finish action whenever that

callee is in the standalone-final state and no standalone state of its subprocesses is in global

state. Thus the rule defines global-final state (final state for short) of a process: a process

is in its the final state when the process is in its final location and the process has no active

subprocess. The Delay rule declares that globally a process can delay if that process and

all of its active subprocesses can delay in their respective standalone semantics. Every

subprocess is a part of the root process and thus if a subprocess is performing an action

(or not idle) then the root process is also not idle. The rule also says that a process cannot

delay if that process or any of its subprocess is in its global final state. That means a process

finishes as soon as it reaches its final state. The Input rule states that a process receives

an input from the environment via channel id.∗. Rule Output declares a process send an

output via channel id.c to others who share id.c.

Theorem 2. The transition system induced by the global semantics is time deterministic,

time reflexive, and time additive.

Proof. The global semantics of a process of a ground timed process automaton is its stan-

dalone semantics. Therefore, the transition system induced by Definition 15 for that process
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is time deterministic, time reflexive, and time additive.

Standalone states of a subprocess can be part of global states only after that subprocess

is started. Whenever a subprocess reaches its terminal state, its standalone states can never

be part of the global state because of the Delay rule and the Finish rule. Therefore, a

nonactive subprocess has no impact on the transition system. None of the action transition

rules allows hidden or internal transition. All non-action and delay related state changes,

thus, occur according to the Delay transition rule. From this rule we can derive for a process

P having n active subprocesses P1, P2, · · · , Pn:

• The only state that can be reached from state {(l, v, P), (l1, v, P1), (l2, v, P2), · · · , (ln, v, Pn)}

after delaying d∈R time units is {(l, v + d, P), (l1, v + d, P1), (l2, v + d, P2), · · · , (ln, v +

d, Pn)},

• The only state that can be reached from state {(l, v, P), (l1, v, P1), (l2, v, P2), · · · , (ln, v, Pn)}

after delaying 0 time units is {(l, v, P), (l1, v, P1), (l2, v, P2), · · · , (ln, v, Pn)}, and

• For any two delays d1 ∈ R and d2 ∈ R, the only state that can be reached from state

{(l, v, P), (l1, v, P1), (l2, v, P2), · · · , (ln, v, Pn)} after delaying d1 and d2 time units is is

{(l, v + d, P), (l1, v + d, P1), (l2, v + d, P2), · · · , (ln, v + d, Pn)}.

Therefore, the transition system induced by Definition 15 is time deterministic, time reflex-

ive, and time additive. �

The process semantics, hence, defines a well-formed timed I/O transition system. This

allows us to use timed automata as a basis for analyzing timed process automata.

Definition 16. A local run of the main thread of a process P is a standalone run of P for

which there exists a global run of P such that every transition of that standalone run occurs

in that global run.
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The local behavior of the main thread of P consists of all of its local runs.

4.4 Analysis

We are interested in safety and reachability properties of timed process automata. This

section explains how such analyses can be performed using the theory of timed games. A

standard timed I/O automaton can be viewed as a concurrent two-player timed game, in

which the players decide both which action to play, and when to play it. The input player

represents the environment, and the output player represents the system itself. Similarly,

the main thread of a process acts as a concurrent two-player timed game: the environment

plays input transitions and finish transitions, and the main thread of the process plays output

transitions and start transitions. Let’s consider interactions of a process defined in the

previous section. A process controls its output and start transitions. After starting a callee,

the main thread of the caller knows that the paired finish action will arrive within the worst-

case execution time of the associated callee. However, the main thread does not have any

control on the exact arrival time of a finish action. Finish transitions along with input

transitions are uncontrollable. The environment of the main thread of a process consists of

all the connected processes (such as caller, siblings, and subprocesses) and all unconnected

entities.

A global state of a process is safe if and only if all of the standalone states which it holds

contain no unsafe location. A safety property asserts that the system remains inside a set

of global-safe states regardless of what the environment does. We are interested in Safety

Property I: Given a process P and a set of unsafe locations LU of P, can the controller

avoid LU in P regardless of what the environment does?

A global state of a process is a target state if and only if at least one of its standalone
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states contains a target location. A reachability property asserts that the system reaches

any of the global-target states regardless of what the environment does. We are interested

in Reachability Property I: Given a process P and a set of target locations LT of P, can the

controller reach a location of LT in P regardless of what the environment does?

The monolithic analysis constructs a static network of automata to represent all possible

global executions by mimicking the hierarchical call tree of the analyzed process. It simu-

lates a process execution by changing states of pre-allocated timed I/O automata which fall

into two groups: a root automaton to simulate the local behaviors of the main thread of the

root process and a finite set of standalone automata to simulate the local behaviors of the

main threads of the subprocesses.

Figure 4.3: A generalized view of the standalone automata construction

Standalone Automata We construct a standalone automaton for each subprocess to sim-

ulate the main thread of that process. To construct a standalone automaton, we prefix the

timed process automaton with a simulated start action and suffix it with a simulated finish

action. We use non-negative finitely bounded integer variables3 in standalone automata to

count the number of active callees, in order to detect termination. We rename actions (e.g.,
3The use of non-negative finitely bounded integer variables can be avoided if a more cumbersome encod-

ing is used.
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a) of processes uniformly to encode channel names (e.g., P.c) in action names (e.g., P.c.a)

of standalone automata; because standard timed I/O automata do not support private chan-

nels. A standalone automaton includes all the locations and slightly altered edges of the

corresponding timed process automaton. Moreover, each standalone automaton has two

additional locations: a new initial location lid
0 to receive (resp., send) a start (resp., finish)

message from (resp., to) the caller, and a new unsafe location BAD to prevent the automa-

ton from waiting in final states instead of finishing. Every start (resp., finish) increments

(resp., decrements) a counter variable n. The automaton represents finishing of the process

in the final location when n = 0.

Definition 17. The standalone automaton of process P is standalone(P) = (L∪{lP
0 , BAD}, lP

0 , X∪

{xP}, {n}, AP, EP, IP), where tpa(P) = (L, l0, X, A,C, E, I, lf), lP
0 and BAD are two newly

added locations, xP is a newly added clock, n is a non-negative finitely bounded integer

variable with the initial value 0, AP
o = A′o ∪ A′s ∪ {channel(P).ftpa(P)} and AP

i = A′i ∪

A′f ∪ {channel(P).stpa(P), P.∗ .u} such that A′m = {channel(P).a | a ∈ Am} ∪ {P.c.a | a ∈

Am and c ∈ C \ {4}} where m ∈ {o, s, i, f} and newly added actions are channel(P).stpa(P),

channel(P).ftpa(P), and P.∗.u. The set of edges EP contains

• Converted edges that do not communicate via caller channel 4:

– An edge (l, P.c.a, φ, ξ, λ ∪ λ′, l′) ∈ EP for each edge (l, a, c, φ, λ, l′) ∈ E, where

c ∈ C \ {4}, the integer assignment is empty ξ = ∅ when a ∈ Ao ∪Ai, ξ = {n−−}

when a ∈ Af , and ξ = {n + +} when a ∈ As

• Converted edges that communicate via caller channel 4:

– An edge (l, channel(P).a, φ, ∅, λ ∪ λ′, l′) ∈ EP for each edge (l, a,4, φ, λ, l′) ∈ E
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• Additional new edges that simulate activation and deactivation:

– Three more edges (lP
0 , channel(P).stpa(P), ∅, ∅, X, l0), (lf , channel(P).ftpa(P), n =

0 ∧ xP = 0, ∅, ∅, lP
0), (lf , P.∗.u, n = 0 ∧ xP > 0, ∅, ∅, BAD) are in EP

λ′ = ∅ when l′ , lf , otherwise λ′ = {xP}. The invariant function IP maps each location l ∈ L

to I(l) and maps each location l ∈ {lP
0 , BAD} to true.

The standalone semantics of automaton tpa(P) and the semantics of standalone automa-

ton standalone(P) are essentially the same in a way that both have the same safety and

reachability properties (that we consider) of the corresponding process.

Figure 4.4: A generalized view of the root automata construction

Root Automata We construct a root automaton to simulate the main thread of the ana-

lyzed process.

Definition 18. To analyze a timed process automaton tpa(P) = (L, l0, X, A,C, E, I, lf), we

construct the root automaton root(P) of process P. Standalone automaton standalone(P)

is slightly different from root(P). The differences are:

• The caller channel is always ⊥,
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• The initial location of root automaton root(P) is the location l0, which is also the

initial location of tpa(P), and

• Root automaton does not have edge (lP
0 ,⊥.stpa(P), ∅, ∅, X, l0), which simulates activa-

tion of P.

Monolithic Analysis Model Monolithic analysis models can be constructed in an au-

tomatable process.

Definition 19. The monolithic analysis model of a ground timed processes automaton (such

as Actuator) is its root automaton. We construct the monolithic analysis model of automa-

ton tpa(P) in the following iterative manner:

First Step: We construct the root automaton root(P).

Iterative Step: We construct a standalone automaton for each triple (Q, sT , c), where Q is

process for which we have constructed a standalone automaton or the root automa-

ton, tpa(Q) = (L, l0, X, A,C, E, I, lf), c ∈ C \ {4, ∗}, sT ∈ As, and (_, sT , c, _, _, _) ∈ E.

Figures 4.3–4.4 present a generalized view of the standalone and root automata con-

structions (a technical report [231] and the appendix present monolithic analysis models

of processes of automata Actuator, Position, and Brake-by-Wire). The monolithic analysis

model constructs a parallel composition of all the timed I/O automata constructed above.

The construction is finite, and the composition is a timed I/O automaton, because we con-

sider only non-recursive well-formed timed process automata.

We add avoiding BAD locations to our safety and reachability properties analyses. We

convert Safety Property I to Safety Property II: Given a process P and a set of unsafe lo-

cations LU of P, can the controller avoid LU and all the BAD locations in the analysis
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model regardless of what the environment does? We also convert Reachability Property I

to Reachability Property II: Given a process P and a set of target locations LT of P, can

the controller reach a location of LT in the analysis model avoiding all the BAD locations

regardless of what the environment does? Special actions are added with timed process

automata to construct corresponding root and standalone automata to simulate starts and

finishes of processes. Avoiding all the newly added BAD locations in the analysis model

ensures that each caller process performs the corresponding finish action as soon as the

callee finishes—exactly as described in the global semantics. Executions (of the analysis

model) that avoid all the newly added BAD locations, when projected on the original al-

phabet, are identical to the executions of the global semantics. Thus, if a Safety Property I

(resp., Reachability Property I) holds for a process then its corresponding Safety Property

II (resp., Reachability Property II) also holds in the analysis model, and vice versa.

Definitions 17, 18, and 19 provide automatable techniques to construct standalone au-

tomata, root automata, and monolithic analysis models, respectively. Thus one can remove

manual alterations—such as manual renaming—by making these constructions automatic.

4.5 Automatable State-Space Reduction

We introduce an automatable state-space reduction technique for timed process automata

to counteract state-space explosion. The technique relies on compositional reasoning, ag-

gressive abstractions, and reducing process synchronizations. In the monolithic analysis

of Section 4.4, a callee can be represented by an arbitrary number of standalone automata,

and each of these automata can be arbitrarily large. The compositional reasoning technique

described in this section replaces hierarchical trees of standalone automata representing

subprocesses with simple abstractions (Figure 4.5)—so called duration automata.
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Figure 4.5: A compositional (sound) analysis model on the left and a monolithic (sound
and complete) analysis model on the right of automaton Brake-by-Wire, where
P is a process of the automaton, R1 is the root automaton, S2–S7 are standalone
automata, and D2–D3 are duration automata

Figure 4.6: A generalized view of duration automata construction

Duration Automata A duration automaton (Figure 4.6) is timed I/O automaton with only

two locations: the initial location (lP
0 ) and the active location (lP

1 ). A duration automaton of

an analyzed process abstracts all the information of global executions of the process other

than its worst-case execution time (WCET). It can capture safety and reachability properties

of interest. The minimal-time safe reachability of a target location is the minimal-time

reachability [74, 153] for which the controller has a winning strategy to reach that target

location by avoiding unsafe states. Like [79, 130], we assume that the WCET W of a

process P is the minimal-time safe reachability time to reach location lP
0 of automaton



www.manaraa.com

4.5. AUTOMATABLE STATE-SPACE REDUCTION 116

root(P) in the analysis model of P. The WCET of P is unknown (W=∞) when there is no

winning strategy for the minimal-time safe reachability to reach location lP
0 of root(P).

Definition 20. The duration automaton of process P is duration(P) = ({lP
0 , l

P
1}, l

P
0 , {x

P}, ∅, AP, EP,

IP), where tpa(P) = (L, l0, X, A,C, E, I, lf), AP
i = {channel(P).stpa(P)}, AP

o = {channel(P).ftpa(P)},

the set of edges EP = {(lP
0 , channel(P).stpa(P), ∅, ∅, {xP}, lP

1), (lP
1 , channel(P).ftpa(P), ∅, ∅, ∅, lP

0)},

invariant IP maps location lP
0 to true, and IP maps location lP

1 to xP ≤ W.

Figure 4.7: Steps of the compositional analysis of automaton Brake-by-Wire. In this fig-
ure, root(P0), tpa(P0) = Actuator means root automaton of process P0, where
P0 is an instance of Actuator, and similar interpretations apply for root(P1),
tpa(P1) = Position, duration(P2), tpa(P2) = Actuator, and so forth.

Compositional Analysis Model We construct the compositional analysis model in a

bottom-up manner: analysis of a compound process is performed only after analyzing all
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its callees. Like the monolithic analysis, the compositional analysis model of a ground

timed process automaton tpa(Q) (such as Actuator) is a root automaton of process Q. That

timed I/O automaton is analyzed to construct a duration automaton of Q. For a compound

process P, we analyze automaton root(P) in the context of the duration automata of its

callees (instead of the entire hierarchical structure of subprocesses).

Definition 21. We construct the compositional analysis model of a timed process automa-

ton tpa(P) in the following manner:

First Step: We construct the root automaton root(P).

Second Step: We construct a duration automaton for each triple (P, sT , c), where tpa(P) =

(L, l0, X, A,C, E, I, lf), c ∈ C \ {4, ∗}, sT ∈ As, and (_, sT , c, _, _, _) ∈ E.

Figure 4.7 presents the compositional analysis procedure of Brake-by-Wire (the de-

tailed models are presented in [231]). The compositional model construction procedure

terminates, and the composition of all the above timed I/O automata is a timed I/O automa-

ton, because we consider only non-recursive well-formed timed process automata.

The duration automaton of a process can capture safety properties: if a process has

a winning strategy for a safety game, then both locations of its duration automaton are

considered safe; otherwise, the active location (lid
1 ) of the duration automaton is added to

the set of unsafe locations LU . Now this duration automaton can be used as a sound context

to analyze the caller automaton for safety. A safety property holds for a compound process

when the main thread of the process satisfies the property locally and allows the activation

of a callee only if that callee also satisfies the property.

Duration automata can also capture reachability properties: if a process has a winning

strategy for a reachability game then the active location (lid
1 ) of the duration automaton
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is added to the set of target locations LT ; otherwise, no target location is specified for

this callee. This duration automaton can be used as a sound context to analyze the caller

automaton for reachability. A reachability property holds for a compound process when

the main thread of the process can reach the target locally or can activate a callee where the

property holds. Like the monolithic analysis, the compositional analysis is performed for

Safety Property II and Reachability Property II.

Theorem 3. The compositional analysis is sound.

Proof. A duration automaton does not contain any input and output actions of its process.

Hence, the root automaton in a compositional model does not synchronize with the input

and output actions of its callees—instead the automaton synchronizes for those actions with

the environment. The duration automaton was created under the assumption that inputs are

uncontrollable, so ignoring synchronization with inputs is sound. Similarly, it is sound to

open the inputs of the root automaton from a callee, as they will be treated as uncontrollable

and unpredictable actions, so will be analyzed in a more “hostile” environment than before

the abstraction. Therefore, if a property holds in the compositional analysis then it also

holds for the monolithic analysis. In other words, if a safety or reachability property holds

in compositional analysis then it holds in the global semantics. �

Our compositional analysis is not complete because it is based on potentially quite

coarse abstractions. In compositional analysis, abstracting from the input and output ac-

tions of callees and subprocesses causes the process to be analyzed in a more “hostile”

environment (i.e., an environment in which no assumptions whatsoever are made about the

timing and relative order of these actions. Therefore, the process might have a winning

strategy in its actual operating environment, when our compositional analysis produces the

opposite result. Definitions 18, 20, and 21 provide automatable techniques to construct root
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automata, duration automata, and compositional analysis models, respectively. Thus one

can automatically reduce state space by implementing our constructions.

4.6 Experimental Results

In all the steps of Figure 4.7, the largest composition contains only three automata, and

except for the root automaton all are tiny duration automata. A monolithic analysis model

of Brake-by-Wire is a composition of seven automata presented in Appendix D. A duration

automaton always has a small constant size (modulo the size of the WCET constant), and

so its state space is very simple (actually the discrete state space is independent of the input

model).

We applied our approach to the case study presented in Chapter 3 in the following way:

• First, we model the central reconfiguration service (in Figure 4.8) and three tasks: S

(in the top of Figure 4.10), W (in the top of Figure 4.11), and D (in the top of Fig-

ure 4.12) using timed process automata. The automaton in Figure 4.8 also models

task releases (using start actions sS, sW, and sD) and terminations (using finish ac-

tions fS, fW, and fD). Like the concrete and abstract models of Chapter 3, an unsafe

location BAD in this automaton is unreachable—a central reconfiguration service (or

a controller) exists that makes the system fault tolerant—when the total load of no

core can exceed its load limit. Similar to the concrete model, timed process automata

of the tasks keep all the internal states of the corresponding tasks. Like the abstract

model, the currently assigned core information is encoded into the automaton of Fig-

ure 4.8. These timed process automata together model system system1 of Chapter 3

in a more abstract way than the concrete model but in a less abstract way than the

abstract model.
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Figure 4.8: A timed process automaton representing the central reconfiguration service

• After that, according to the construction technique of Section 4.4, we construct the
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Figure 4.9: Root automaton of the central reconfiguration service

standalone automata (presented in the middle of Figures 4.10–4.12) of the timed pro-

cess automata representing tasks (presented in the top of Figures 4.10–4.12) and the
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Figure 4.10: Timed process automaton (in the top), standalone automaton (in the middle),
and duration automaton (in the bottom) of task S of Chapter 3

root automaton (presented in Figure 4.8) of the timed process automaton represent-

ing the central reconfiguration service (presented in Figure 4.9). The composition

of these four timed I/O automata represents a monolithic analysis model of system

system1 of Chapter 3, and we simply call this model the monolithic model. Con-

figurations of system system1 of Chapter 3 are combinations of different worst-case
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Figure 4.11: Timed process automaton (in the top), standalone automaton (in the middle),
and duration automaton (in the bottom) of task W of Chapter 3

loads of tasks on different cores, different worst-case execution times of tasks, differ-

ent best-case execution times of tasks, and different release periods of tasks. Exis-

tence of a central reconfiguration service (or controller) depends on the current con-

figuration. We analyze the monolithic model against 20 configurations of Table 4.14,

which is a copy of Table 3.1. Like Section 3.5, all the analyses were performed by

Uppaal Tiga-0.17 on a PC with an Intel Core i3 CPU at 2.4 GHz, 4 GB of RAM, and

running 64-bit Windows 7. Table 4.2 represents the analysis results in the form of

controller synthesis time (in seconds) and the strategy size (in kilobytes). Unlike the

previous chapter, we are not mainly concerned with controller synthesis from timed

4To show clearer impacts of different modeling aspects on the analysis, we picked some imaginary system
configurations instead of some actual system configurations.
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Figure 4.12: Timed process automaton (in the top), standalone automaton (in the middle),
and duration automaton (in the bottom) of task D of Chapter 3

process automata—rather only checking the existence of a controller. We, however,

also synthesized the controller because the synthesis time and the strategy size con-

vey a clearer idea regarding the size of the state space. Moreover, they allow us to

compare the models of this chapter with the models of the previous chapter. The

monolithic model produces large state spaces, and for many configurations state-

space explosion occurred, such as for configurations C3 (for CFL 1), C4, C5, C7, C8

(for CFL 2), C9, C10, C11, C12, C13, C14 (for CFL 2), C15 (for CFL 2), C16, C17

(for CFL 2), C18 (for CFL 2), and C19 (for CFL 2).
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Con- Period WCET BCET Load on Load on Load on
fig- of of of core1 of core2 of core3 of
ura- task task task task task task
tion S W D S W D S W D S W D S W D S W D
C1 10 10 10 5 5 5 4 4 4 60 45 5 10 80 5 10 5 85
C2 10 10 10 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85
C3 10 15 20 5 5 5 0 0 0 60 45 5 10 80 5 10 5 85
C4 10 15 20 5 5 5 0 0 0 60 35 5 10 80 5 10 5 85
C5 10 15 20 5 5 5 0 0 0 43 37 7 11 67 19 23 13 59
C6 10 15 20 5 5 5 0 0 0 43 37 59 11 67 39 23 13 59
C7 10 15 20 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C8 10 15 30 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C9 10 20 30 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33

C10 11 19 31 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C11 5 7 11 5 5 5 0 0 0 33 33 33 33 33 33 33 33 33
C12 5 7 11 5 3 2 0 0 0 33 33 33 33 33 33 33 33 33
C13 5 7 11 5 3 2 5 3 2 33 33 33 33 33 33 33 33 33
C14 10 15 20 5 5 5 5 5 5 33 33 33 33 33 33 33 33 33
C15 10 15 20 5 7 11 5 7 11 33 33 33 33 33 33 33 33 33
C16 10 15 20 5 7 11 0 0 0 33 33 33 33 33 33 33 33 33
C17 10 15 20 7 7 7 7 7 7 33 33 33 33 33 33 33 33 33
C18 10 15 20 5 7 7 5 7 7 33 33 33 33 33 33 33 33 33
C19 10 15 20 7 7 11 7 7 11 33 33 33 33 33 33 33 33 33
C20 10 15 20 9 13 19 9 13 19 33 33 33 33 33 33 33 33 33

Table 4.1: Different configurations: combinations of release period, WCET, and BCET
have abstract time units; and loads are in % of the respective core

• At the end, according to the construction technique of Section 4.5, we construct the

compositional model, which is a composition of the root automaton of the previous

step and three duration automata (presented in the bottom of Figures 4.10–4.12).

We performed the same experiments on the compositional model that we performed

on the concrete model (in Chapter 3), the abstract model (in Chapter 3), and the

monolithic model (in the previous step). Table 4.2 shows that the compositional

model produces a much smaller state space than the monolithic model.

Experimental results of the monolithic and compositional models show:

1. Abstraction improves the scalability dramatically for every configuration of Table 4.1.
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Configurations CFL Comparison
of monolithic model compositional model

Table 4.1 time size time size

C1 2 No controller exists
1 39.08 72608 0.09 76

C2 2 No controller exists
1 71.41 83971 0.09 76

C3 2 No controller exists
1 Out of Memory 0.12 136

C4 2 Out of memory 0.19 439
1 0.08 154

C5 2 Out of memory 0.19 439
1 0.08 154

C6 2 No controller exists1

C7 2 Out of memory 0.20 439
1 0.11 154

C8 2 Out of memory 0.14 278
1 95.76 106960 0.09 101

C9 2 Out of memory 0.15 346
1 0.10 124

C10 2 Out of memory 64.60 18321
1 22.53 5868

C11 2 Out of memory 5.05 5517
1 1.87 1783

C12 2 Out of memory 3.18 4124
1 1.19 1338

C13 2 Out of memory 3.18 4124
1 1.19 1338

C14 2 Out of memory 0.20 439
1 78.12 118477 0.11 154

C15 2 Out of memory 0.21 530
1 47.30 77548 0.13 183

C16 2 Out of memory 0.21 530
1 0.13 183

C17 2 Out of memory 0.20 462
1 59.26 109982 0.13 161

C18 2 Out of memory 0.20 453
1 50.29 73914 0.12 158

C19 2 Out of memory 0.21 540
1 45.14 84370 0.13 186

C20 2 94.07 179479 0.26 633
1 34.14 63791 0.15 216

Table 4.2: Comparisons of the monolithic and compositional models with respect to con-
troller synthesis time (in seconds) and the strategy size (in kilobytes)
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Experiments for different configurations for the same system revealed that speed up

of two orders of magnitude is possible with the compositional technique, while main-

taining enough precision. The size of composition in the monolithic analysis is ex-

ponential in the depth of the hierarchy, due to a product construction (and it is also

linear in the multiplication of sizes of all included standalone automata). In the com-

positional analysis, the depth of the hierarchy is constant (only two layers) and we

only take a product of one root automaton with several constant size duration au-

tomata; this explains why the obtained speed-ups are so dramatic. The efficiency

gains are primarily due to the coarse abstraction of safety and reachability properties

of an arbitrarily large callee into a tiny duration automaton. Abstraction and compo-

sitional reasoning together might provide similar speed ups for timed I/O automata in

Chapter 3; and the restrictions that timed process automata impose on models allow

one to automate the procedure.

2. For the monolithic models, the larger the difference between WCET and BECT the

longer the analysis time, and the sparser the strategy, for example, configuration

C1 versus configuration C2, C7 versus C14, and C15 versus C16. Unlike the other

models, differences between the WCET and the corresponding BCET in the com-

positional model has no impact on the controller synthesis time or on the strategy

size—for example, C1 versus C2, C7 versus C14, C12 versus C13, and C15 versus

C16—because duration automata do not keep details regarding the best-case execu-

tion times.

3. The smaller the least common multiples of release periods the smaller state space,

the shorter analysis time, and the more compact strategy, for instance, C2 versus C3,

C8 versus C9, C9 versus C10, C10 versus C11, and so forth.
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4. The least common multiples of the execution times have no clear impact on the anal-

ysis time or the size of the strategy, for example, C14 versus C15, C15 versus C17,

C17 versus C18, C18 versus C19, C19 versus C20, and so forth.

5. Variations in the least common denominator of non-clock variables, such as different

loads, do not have any significant impact on the analysis, for instance, C4 versus C5

and C5 versus C7.

6. Uppaal Tiga takes less time and generates a smaller strategy for a higher value for

CFL, for instance, configurations C4, C5, C7, C8, C9, C10, C11, C12, C13, C14,

C15, C16, C17, C18, C19, and C20.

Observations in the above match with the observations presented in Section 3.5. Depending

on controller synthesis times or strategy sizes of Table 3.2 and Table 4.2, the following

two relationships clearly hold: abstract ≤ monolithic ≤ concrete and compositional ≤

monolithic ≤ concrete. However, analyses results do not exhibit such explicit relationship

between the abstract model and the compositional model. The compositional model has

better outcomes than the abstract model for most of the cases, for example, configurations

C2 (for CFL 2), C3 (for CFL 2), C4, C5, C7, C8, C9, C10, C11, C12, C14, C16, C17 (for

CFL 2), and C18.

4.7 Discussion

Classical timed automata [14, 15] and timed I/O automata [4, 95] have explicit modeling

support only for static non-hierarchical structures. In 2011, we identified and classified

eighty variants of timed automata into eleven classes in Chapter 2 [230] and there may

be many more. Timed process automata fall in the class of timed automata with resources
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[230] because of their ability to model dynamic behaviors, which is required when resource

constraints do not permit one to activate all the components at the same time. More pre-

cisely, the model is a direct generalization of task automata [121], dynamic networks of

timed automata [77], and callable timed automata [58]. These three variants model only

closed systems, while timed process automata can model both closed and open systems.

Task automata model only two layers (a scheduler and its tasks) of hierarchy, while timed

process automata, dynamic networks of timed automata [77], and callable timed automata

are able to model any numbers of hierarchies. Unlike timed process automata, none of them

supports private communication, provides compositional modeling with reusable designs

for different contexts, or supports automated state-space reduction technique.

Dynamic networks of continuous-time automata have also been studied in the context

of hybrid automata [128, 96]. These works model physical environments using differential

equations, which restrict the kinds of environments that can be described. In practice, large

differential equations make analyses unmanageable, or can only give statistical guarantees

[96]. These works focus on system dynamics, and do not support private communication.

Timed process automata can be considered as a member of the class of timed automata with

succinctness [230] because they hide many design details from the designers to achieve

succinctness (like timed automata variants with urgency [56, 33, 230]). Timed process

automata are also timed game automata [190, 100, 4, 95] because the new variant uses

timed games for analysis.
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Chapter 5

Conclusions

We have developed an approach compositional modeling with reuse and an automatable-

state-space reduction technique for timed games-based analysis of dynamic hierarchical

open systems, which are common in practice. The development can be divided into five

sequential phases:

1. Studying background in Chapter 2,

2. Pioneering automatable synthesis of reconfiguration services in Chapter 3,

3. Developing an abstraction-based manual state-space reduction technique for timed

I/O automata-based analysis in Chapter 3,

4. Introducing an approach for compositional modeling with reuse in Chapter 4, and

5. Developing an abstraction-based automatable state-space reduction technique for

timed process automata-based analysis in Chapter 4.
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5.1 Summary

We have presented a survey on semantics, decision problems, variants, implementability,

and tools of timed automata in Chapter 2. Section 2.2.2 is interesting as it informs how

symbolic semantics-based analysis has evolved with time to make timed automata more

suitable for practical uses such as tool development. There are many data structures, such

as CDD [179], CDR [235], NDD [26], other than DBM [41, 44, 106] for symbolic seman-

tics of timed automata; however, our survey did not explore these data structures. We have

listed major linguistic properties and decision problems of classical timed automata in Sec-

tion 2.3. Decidability of emptiness checking and the undecidability of inclusion problem

are the two major results of this survey. When we started working in this area we first

thought that timed automata would have at most thirty variants, and then after performing

this extensive survey we came to realize that timed automata had many more variants. We

have listed around eighty variants in Section 2.4. We believe there are more variants of

timed automata that exist, and that the number is increasing with time. No previous sur-

vey on timed automata exists which lists at least twenty variants. We also classify these

variants into eleven classes depending on their construction and functionality. This classi-

fication will help a reader to understand similarities and differences among timed automata

variants. This survey discusses only major variants of each class. We hope these discus-

sions on major variants will give a reader a rough idea of other variants of the same class.

An interested reader can learn more about an undescribed (but listed) variant from its re-

lated citation. Section 2.5 identifies, describes, and classifies forty timed automata-based

research and academic tools.

In Chapter 3, we have presented the synthesis process using a mixed-criticality AMP

system having a fault-intolerant criticality-unaware scheduler with fixed allocation. This
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includes two different design principles to model the problem using timed games, based

on a selection of simplifications and abstractions. We compared the models for scalabil-

ity, showing that solving the problem using strategy synthesis for timed games is feasible.

We have observed that reducing action based synchronization, the state space, and espe-

cially shared states, improves efficiency of algorithms. Our reconfiguration services are

distributed, and the synthesis process applies to mixed-criticality systems, both in symmet-

ric and asymmetric scenarios. We demonstrated this on a case study from the automotive

domain. This is the first case study applying timed games to the synthesis reconfiguration

services for fault-tolerance.

In Chapter 4, we have presented timed process automata that captures dynamic acti-

vation and deactivation of continuous-time control processes and private communication

among the active processes. We have provided a safety and reachability analysis tech-

nique for non-recursive well-formed timed process automata. We have also designed an

abstraction- and compositional reasoning-based state-space reduction technique for auto-

mated analysis of large industrial systems. Our analysis techniques can be applied in prac-

tice using any standard timed games solver such as Uppaal Tiga [35] and Synthia [118].

Timed process automata can model private communication and open systems. More-

over, timed process automata provide two important features for industrial dynamic open

time-critical systems development: (i) compositional modeling with reusable designs for

different contexts and (ii) automated state-space reduction technique.

5.2 Limitations and Future Works

Timed automata have huge potential to be a prominent industrial model. Unfortunately,

they are barely used in practice. Use of timed automata in the industry will be widespread
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if researchers can triumph over timed automata’s state-space explosion problem and timed

automata’s realizability problem. Section 2.2.2 briefly discusses symbolic semantics which

is only one of the frontiers in the war on state-space explosion. Accurate timed automata

implementability is getting more attention every day. Usually robustness analysis intro-

duces larger state-spaces for example, Figure 3 of [177]. A study on the comparison and

relation between these two problems—state-space explosion and robust analysis—of timed

automata would be an interesting work for the research community. Our strong involve-

ment with (automotive) industry and long experience in timed automata helped us to un-

derstand that state-space explosion is the biggest obstacle for timed automata. After our

development of an automatable state-space reduction, the main challenge for timed (game)

automata, therefore, is to improve computational efficiency of their symbolic semantics and

data structures in a way that their computational complexity should be almost as expensive

as their discrete-time counterpart.

In only two decades the theory of timed automata has established itself as an integral

part of dense-time-based analyses. This area is becoming more and more active. Our sur-

vey in Chapter 2 is only a snapshot of this area. The main motivation of this survey was

to provide a coherent picture of this scattered arena. This survey did not discuss real-time

temporal logics, real-time formal verification, and real-time controller synthesis because

these topics are mostly related to real-time formal models in general instead of being spe-

cific to timed automata. A rigorous survey on timed automata-based tools including case

studies, performance analyses, and commercial tools would be a good step to convince

people to increase the use of timed automata in industry.

Section 3.6 discusses generalization of our reconfiguration synthesis technique of Chap-

ter 3 to several other scenarios. We did not implement our technique for those scenarios
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Configurations CFL Comparison
of concrete abstract monolithic compositional

Table model model model model
3.2 or 4.1 time size time size time size time size

C1 2 No controller exists
1 94.20 290663 0.08 73 39.08 72608 0.09 76

C2 2 No controller exists
1 115.71 296524 0.11 107 71.41 83971 0.09 76

C3 2 No controller exists
1 Out of memory 0.14 242 Out of Memory 0.12 136

C4 2 Out of memory 0.25 712 Out of memory 0.19 439
1 0.14 266 0.08 154

C5 2 Out of memory 0.25 712 Out of memory 0.19 439
1 0.14 266 0.08 154

C6 2 No controller exists1

C7 2 Out of memory 0.25 712 Out of memory 0.20 439
1 0.14 266 0.11 154

C8 2 Out of memory 0.15 420 Out of memory 0.14 278
1 0.11 159 95.76 106960 0.09 101

C9 2 Out of memory 0.22 632 Out of memory 0.15 346
1 0.14 234 0.10 124

C10 2 Out of memory 178.54 40668 Out of memory 64.60 18321
1 73.32 14647 22.53 5868

C11 2 Out of memory 4.91 6274 Out of memory 5.05 5517
1 1.65 2277 1.87 1783

C12 2 Out of memory 4.07 6272 Out of memory 3.18 4124
1 1.65 2275 1.19 1338

C13 2 Out of memory 1.93 3639 Out of memory 3.18 4124
1 0.81 1332 1.19 1338

C14 2 Out of memory 0.20 539 Out of memory 0.20 439
1 0.14 204 78.12 118477 0.11 154

C15 2 Out of memory 0.15 431 Out of memory 0.21 530
1 0.11 164 47.30 77548 0.13 183

C16 2 Out of memory 0.24 718 Out of memory 0.21 530
1 0.14 270 0.13 183

C17 2 Out of memory 0.16 458 Out of memory 0.20 462
1 0.12 173 59.26 109982 0.13 161

C18 2 Out of memory 0.16 485 Out of memory 0.20 453
1 0.10 184 50.29 73914 0.12 158

C19 2 Out of memory 0.14 406 Out of memory 0.21 540
1 0.10 154 45.14 84370 0.13 186

C20 2 Out of memory 0.14 358 94.07 179479 0.26 633
1 0.09 135 34.14 63791 0.15 216

Table 5.1: Comparisons of the concrete, abstract, monolithic and compositional models
with respect to synthesis time (in seconds) and the strategy size (in kilobytes)
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but we are interested to know others’ experience for those scenarios if they follow our

generalization.

Timed process automata allow compositional modeling with reuse by using channel-

based dynamic renaming. One may explore this renaming process for other types of timed

or hybrid or untimed automata to develop compositional modeling with reuse for the re-

spective automata. One limitations for our compositional modeling with reuse is it handles

only three representations mentioned in Section 1.1.2. We, however, do not know other

design aspects for which manual design alterations can be replaced by automated tech-

niques. Investigating numerous large industrial models and surveying modeling experts

might help one to find other design aspects that can be automated.Such type of investiga-

tion may also provide evidence that compositional modeling with reuse of timed process

automata reduces modeling errors in practice. Findings of these investigations may encour-

age researchers to extend (timed process or other) automata’s capability for compositional

modeling with reuse.

Timed process automata facilitate automatable state-space reduction technique for timed

games-based analysis of dynamic hierarchical systems. Theoretically manual state-space

reduction may achieve similar or smaller state-spaces than automated state-space reduc-

tion. Even practically it is usually true for smaller systems for example, the comparisons in

Table 5.1. However, efficiency of automated state-space reduction increases with depth of

the control hierarchies in practice. Dynamic hierarchical systems with deep control hier-

archies make up a small portion of all types of systems. Therefore, automated state-space

reduction techniques for standard timed I/O automata are much more important and de-

sirable than automated state-space reduction techniques for timed process automata. We

strongly encourage researchers to develop an automated state-space reduction technique
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for standard timed I/O automata. A similar but larger challenge is to develop a general

automated state-space reduction technique for all types of timed automata.

This thesis considers only location-based safety and location-based reachability proper-

ties of timed process automata. Investigation of other types of properties—including more

general safety and reachability properties—may produce interesting outcomes. We use

simple abstract model duration automata for our automatable state-space reduction tech-

nique. Others may prefer to use different kinds of abstract models for this purpose. Even

for some scenarios or properties our duration automata might be too abstract to analyze.

One may consider other state-space reduction techniques for timed process automata. For

example, compositional model reduction of discrete time systems (DES) has been done by

generalizing observers for deterministic DES to nondeterministic DES and characterizing

using the join semilattice of compatible partitions of a transition system to achieve efficient

algorithms [183, 184].

It would be interesting to consider a model transformation from a subset of the real-time

π-calculus [203, 31] to timed process automata. This transformation might enable control-

lability analysis of π-calculus for open systems. The converse reduction from timed process

automata to real-time π-calculus could also give several advantages: understanding timed

process automata semantics in terms of the well-established π-calculus formalism, access

to tools developed for real-time π-calculus [203], which might permit the analysis of recur-

sive processes; it would also give a familiar automata-like syntax to π-calculus formalisms.

It would also be relevant to minimize the number of subprocesses in controller synthesis.

One may consider synthesis under this objective in the future, possibly by reduction to

priced/weighted timed automata [22, 38].
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Appendix A

Appendix for Chapter 1

Name Type Purpose
P Constant To store total processing units
D1 Constant To store the deadline for tasks T1, T4, T7, T10
D2 Constant To store the deadline for tasks T2, T5, T8, T11
D3 Constant To store the deadline for tasks T3, T6, T9, T12
W1 Constant To store the WCET of task T1
W2 Constant To store the WCET of task T2
W3 Constant To store the WCET of task T3
W4 Constant To store the WCET of task T4
W5 Constant To store the WCET of task T5
W6 Constant To store the WCET of task T6
W7 Constant To store the WCET of task T7
W8 Constant To store the WCET of task T8
W9 Constant To store the WCET of task T9
W10 Constant To store the WCET of task T10
W11 Constant To store the WCET of task T11
W12 Constant To store the WCET of task T12

Table A.1: Constants in the models
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Name Type Purpose
x1 Clock To record time passed since x1 equals to dealine D1
x2 Clock To record time passed since x2 equals to dealine D2
x3 Clock To record time passed since x3 equals to dealine D3
y Clock To record time passed since the last discrete time unit
B Integer Buffer B=1 when the executing task on the failed core need to

execute 1 time unit more, B=2 when the extra time unit is currently,
executing, & B=0 is otherwise

F Bool Fault F=0 if no fault has occurred yet, otherwise F=1
h Integer Halt h=0 if no runaway task present, otherwise h=1
p Integer Number of occupied (or broken) processing units
e1 Integer Remaining execution time of task T1
e2 Integer Remaining execution time of task T2
e3 Integer Remaining execution time of task T3
e4 Integer Remaining execution time of task T4
e5 Integer Remaining execution time of task T5
e6 Integer Remaining execution time of task T6
e7 Integer Remaining execution time of task T7
e8 Integer Remaining execution time of task T8
e9 Integer Remaining execution time of task T9
e10 Integer Remaining execution time of task T10
e11 Integer Remaining execution time of task T11
e12 Integer Remaining execution time of task T12
s1 Integer State of T1: 0 = suspend or runaway, 1 = ready, 2 = running
s2 Integer State of T2: 0 = suspend or runaway, 1 = ready, 2 = running
s3 Integer State of T3: 0 = suspend or runaway, 1 = ready, 2 = running
s4 Integer State of T4: 0 = suspend or runaway, 1 = ready, 2 = running
s5 Integer State of T5: 0 = suspend or runaway, 1 = ready, 2 = running
s6 Integer State of T6: 0 = suspend or runaway, 1 = ready, 2 = running
s7 Integer State of T7: 0 = suspend or runaway, 1 = ready, 2 = running
s8 Integer State of T8: 0 = suspend or runaway, 1 = ready, 2 = running
s9 Integer State of T9: 0 = suspend or runaway, 1 = ready, 2 = running
s10 Integer State of T10: 0 = suspend or runaway, 1 = ready, 2 = running
s11 Integer State of T11: 0 = suspend or runaway, 1 = ready, 2 = running
s12 Integer State of T12: 0 = suspend or runaway, 1 = ready, 2 = running

Table A.2: Variables in the models
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Figure A.1: Functions set1, set2, and set3
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Figure A.2: Function update
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Figure A.3: Function assignment
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Appendix B

Appendix for Chapter 2

B.1 Finiteness of Zone Graph

Zone graphs are not always finite [46, 99], which makes exhaustive exploration impossible.

To remedy this problem, one approach is to construct a region-closed zone graph [57, 227,

223]: replace each [δ] ∈ Z(A) by the union of the regions of R(A) which intersect [δ].

Since the number of regions is finite, there is a finite number of zones after this operation.

The region closure of a zone may not be convex. As a result, DBM cannot be used. For

this reason, the region-closed zone graph is not used in practice.

Another approach to guarantee finiteness of zone graph is the use of an abstraction

operator called the k-extrapolation, where k is a constant supposed to be greater than the

maximal constant occurring in the automaton A [46, 99, 208]. The k-extrapolation operator

abstracts Z(A) into another zone graph Z′(A), denoted k-extrapolated zone graph, such

that all constraints defined inZ′(A) are k-bounded. The k-extrapolated zone graph is finite,

since the number of clock zones with bounded constraints is finite. As an example, a

finite k-extrapolated zone graph of the infinite zone graph of Figure B.1(b) is shown in

Figure B.1(c).
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(a) A timed automaton

(b) An infinite zone graph (c) A k-extrapolated zone graph

Figure B.1: A timed automaton with its infinite zone graph and its k-extrapolated (here,
k = 20) zone graph [46]
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A k-extrapolated zone graph is correct for reachability1 only for diagonal-free timed

automata [45, 59]. If automaton A has any diagonal constraint, zone graphZ(A) may have

a reachable zone 〈l, [δ]〉 but l is not a reachable location in A. A k-extrapolated zone graph

is correct for reachability if clock valuation ν satisfies a diagonal constraint δ if and only

if clock valuation µ satisfies δ, where ν and µ are k-extrapolated zone equivalent clock

valuations [46]. One method to ensure correctness for reachability of a k-extrapolated zone

graph is to check this property [46]. However, checking this property may suffer from an

exponential blow-up in the number of zones. The number of zones is multiplied by 2n,

where n is the number of diagonal constraints. To remedy this problem, a new method

has been proposed based on counter-example2 guided abstraction refinement [66] and has

been applied [207] in Uppaal [36]. Not all the diagonal constraints cause incorrectness for

reachability. In practice, diagonal constraints produce an incorrect result only rarely. Since

counter-examples are rare, this refinement method causes very little overhead in practice.

1We say that a symbolic transition system T ′ of an original transition system T is correct for reachability
if and only if a state s is reachable in T then there is a reachable symbolic state s′ in T ′ which contains s.

2A counter-example is a trace where location l in A is not reachable, but zone 〈l, [δ]〉 inZ(A) is reachable.
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Property Closure Under Property Closure Under
Union Yes Kleene-star Yes
Intersection Yes Projection Yes
Concatenation Yes Shuffle No
Renaming Yes Complementation No

Table B.1: Closure properties of timed automata

Problem Complexity
Emptiness checking PSPACE-complete
Timed bisimulation EXPTIME

Timed simulation EXPTIME

Universality Undecidable
Language inclusion Undecidable
Determinizability Undecidable
Minimum-time reachability PSPACE-hard
Computing the clock degree Undecidable
Language equivalence Undecidable
Reducing the size of constants Undecidable
Minimization of the number of clocks Undecidable
Binary reachability Decidable

Table B.2: Decision problems of timed automata
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Property Closed Under Property Closed Under
Union Yes Complementation Yes
Intersection Yes Projection No
Renaming No

Table B.3: Closure properties of deterministic timed automata

Problem Complexity Problem Complexity
Emptiness checking PSPACE-complete Language inclusion PSPACE-complete
Universality PSPACE-complete Language equivalence PSPACE-complete

Table B.4: Complexity of decision problems for deterministic timed automata

Clock Constraint Reachability
x ∼ q PSPACE-complete
x − y ∼ q PSPACE-complete
x ∼ e Undecidable
x − y ∼ e Undecidable
d + n · θ ≤ x ≤ e + n · θ PSPACE-complete
d + n · θ ≤ x − y ≤ e + n · θ PSPACE-complete
x ∼ q · y Undecidable
x − y ∼ q · z Undecidable

Table B.5: Complexity of reachability checking using different clock constraints
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Clock Update Diagonal-Free With Diagonal
x := c PSPACE-complete PSPACE-complete
x := y PSPACE-complete PSPACE-complete
x := x + 1 PSPACE-complete Undecidable
x := y + c PSPACE-complete Undecidable
x := x − 1 Undecidable Undecidable
x :< c PSPACE-complete PSPACE-complete
x :> c PSPACE-complete Undecidable
x :∼ y + c PSPACE-complete Undecidable
y + c <: x :< y + d PSPACE-complete Undecidable
y + c <: x :< z + d Undecidable Undecidable

Table B.6: Complexity of reachability checking using different clock updates

Task Automata Preemptive Non-Preemptive
Fixed and Feedback PSPACE-complete PSPACE-complete
Fixed and Non-Feedback PSPACE-complete PSPACE-complete
Flexible and Feedback Undecidable PSPACE-complete
Flexible and Non-Feedback PSPACE-complete PSPACE-complete

Table B.7: Complexity of preemptive and non-preemptive scheduling of task automata
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Appendix C

Appendix for Chapter 3

Name Type Purpose
x Clock To record time passed since S was initialized
y Clock To record time passed since W was initialized
z Clock To record time passed since D was initialized
aS Integer To record the core which is currently assigned to execute S
aW Integer To record the core which is currently assigned to execute W
aD Integer To record the core which is currently assigned to execute D
iS Boolean To record whether S is initialized (1) or yet to initialize (0)
iW Boolean To record whether W is initialized (1) or yet to initialize (0)
iD Boolean To record whether D is initialized (1) or yet to initialize (0)
uS Boolean To record whether an update in S is performed (1) or not (0)
uW Boolean To record whether an update in W is performed (1) or not (0)
uD Boolean To record whether an update in D is performed (1) or not (0)
L1 Integer To record the current worst possible loads on core1

L2 Integer To record the current worst possible loads on core2

L3 Integer To record the current worst possible loads on core3

vS Integer To record the current value in the speedometer
sD Integer To record the current door state
F Integer To record the current total number of core failures

Table C.1: Variables in the concrete model
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Name Type Purpose
CFL Constant To store CFL
pS Constant To store release period of S
pW Constant To store release period of W
pD Constant To store release period of D
wS Constant To store the WCET of S
wW Constant To store the WCET of W
wD Constant To store the WCET of D
bS Constant To store the BCET of S
bW Constant To store the BCET of W
bD Constant To store the BCET of D
lS1 Constant To store the worst-case load of S on core1

lS2 Constant To store the worst-case load of S on core2

lS3 Constant To store the worst-case load of S on core3

lW1 Constant To store the worst-case load of W on core1

lW2 Constant To store the worst-case load of W on core2

lW3 Constant To store the worst-case load of W on core3

lD1 Constant To store the worst-case load of D on core1

lD2 Constant To store the worst-case load of D on core2

lD3 Constant To store the worst-case load of D on core3

Limit Constant To store the load limit of every core

Table C.2: Constants in the concrete model
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Name From To Purpose
iS1 core1 core1.S To initialize S on core1

iS2 core2 core2.S To initialize S on core2

iS3 core3 core3.S To initialize S on core3

iW1 core1 core1.W To initialize W on core1

iW2 core2 core2.W To initialize W on core2

iW3 core3 core3.W To initialize W on core3

iD1 core1 core1.D To initialize D on core1

iD2 core2 core2.D To initialize D on core2

iD3 core3 core3.D To initialize D on core3

rS1 service core1.S To resume S on core1

rS2 service core2.S To resume S on core2

rS3 service core3.S To resume S on core3

rW1 service core1.W To resume W on core1

rW2 service core2.W To resume W on core2

rW3 service core3.W To resume W on core3

rD1 service core1.D To resume D on core1

rD2 service core2.D To resume D on core2

rD3 service core3.D To resume D on core3

kS1 core1, service core1.S To kill S on core1

kS2 core2, service core2.S To kill S on core2

kS3 core3, service core3.S To kill S on core3

kW1 core1, service core1.W To kill W on core1

kW2 core2, service core2.W To kill W on core2

kW3 core3, service core3.W To kill W on core3

kD1 core1, service core1.D To kill D on core1

kD2 core2, service core2.D To kill D on core2

kD3 core3, service core3.D To kill D on core3

Table C.3: Actions in the concrete model (part 1)
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Name From To Purpose
tS1 core1.S core1 To terminate S on core1

tS2 core2.S core2 To terminate S on core2

tS3 core3.S core3 To terminate S on core3

tW1 core1.W core1 To terminate W on core1

tW2 core2.W core2 To terminate W on core2

tW3 core3.W core3 To terminate W on core3

tD1 core1.D core1 To terminate D on core1

tD2 core2.D core2 To terminate D on core2

tD3 core3.D core3 To terminate D on core3

mSW core1, core2 service To inform that it is assigned to execute S and W
mSD core1, core3 service To inform that it is assigned to execute S and D
mWD core2, core3 service To inform that it is assigned to execute W and D
mS core1 service To inform that it is assigned to execute S
mW core2 service To inform that it is assigned to execute W
mD core3 service To inform that it is assigned to execute D

Table C.4: Actions in the concrete model (part 2)
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Name Type Purpose
x Clock To record time passed since S was initialized
y Clock To record time passed since W was initialized
z Clock To record time passed since D was initialized
aS1 Boolean To record whether core1 is currently assigned (1) to execute S or not (0)
aW1 Boolean To record whether core1 is currently assigned (1) to execute W or not (0)
aD1 Boolean To record whether core1 is currently assigned (1) to execute D or not (0)
aS2 Boolean To record whether core2 is currently assigned (1) to execute S or not (0)
aW2 Boolean To record whether core2 is currently assigned (1) to execute W or not (0)
aD2 Boolean To record whether core2 is currently assigned (1) to execute D or not (0)
aS3 Boolean To record whether core3 is currently assigned (1) to execute S or not (0)
aW3 Boolean To record whether core3 is currently assigned (1) to execute W or not (0)
aD3 Boolean To record whether core3 is currently assigned (1) to execute D or not (0)
iS Boolean To record whether S is initialized (1) or yet to initialize (0)
iW Boolean To record whether W is initialized (1) or yet to initialize (0)
iD Boolean To record whether D is initialized (1) or yet to initialize (0)
L1 Integer To record the current worst possible loads on core1

L2 Integer To record the current worst possible loads on core2

L3 Integer To record the current worst possible loads on core3

F Integer To record the current total number of core failures

Table C.5: Variables in the abstract model
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Name Type Purpose
CFL Constant To store CFL
pS Constant To store release period of S
pW Constant To store release period of W
pD Constant To store release period of D
wS Constant To store the WCET of S
wW Constant To store the WCET of W
wD Constant To store the WCET of D
bS Constant To store the BCET of S
bW Constant To store the BCET of W
bD Constant To store the BCET of D
lS1 Constant To store the worst-case load of S on core1

lS2 Constant To store the worst-case load of S on core2

lS3 Constant To store the worst-case load of S on core3

lW1 Constant To store the worst-case load of W on core1

lW2 Constant To store the worst-case load of W on core2

lW3 Constant To store the worst-case load of W on core3

lD1 Constant To store the worst-case load of D on core1

lD2 Constant To store the worst-case load of D on core2

lD3 Constant To store the worst-case load of D on core3

Limit Constant To store the load limit of every core

Table C.6: Constants in the abstract model
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Figure C.1: Functions initialize and terminate in the concrete model
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Figure C.2: Functions kill, and cancel in the concrete model
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Figure C.3: Functions resume and reassign in the concrete model
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Figure C.4: Automaton core2 in the concrete model
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Figure C.5: Automaton core3 in the concrete model

Figure C.6: Automaton core2.S in the concrete model
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Figure C.7: Automaton core3.S in the concrete model

Figure C.8: Automaton core1.W in the concrete model

Figure C.9: Automaton core2.W in the concrete model

Figure C.10: Automaton core3.W in the concrete model
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Figure C.11: Automaton core1.D in the concrete model

Figure C.12: Automaton core2.D in the concrete model

Figure C.13: Automaton core3.D in the concrete model
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Figure C.14: Functions initializeA and terminateA in the abstract model
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Figure C.15: Function reallocate in the abstract model
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Appendix D

Appendix for Chapter 4

Sample I/O

Figure D.1: The Brake-by-Wire system

Input: timed process automaton Actuator creation

1. Name: Actuator

2. Input Actions: ∅
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3. Output Actions: {Brake}

4. Callees: ∅

5. Clocks: ∅

6. Channels: ∅

7. Locations: l0, l1

8. Initial Location: l0

9. Final Location: l1

10. Invariant: l0 :true, l1 :true

11. Edges:

• New edge:

– Source Location: l0

– Action: brake

– Channel: ∗

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l1

Input: timed process automaton Position creation

1. Name: Position

2. Input Actions: ∅
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3. Output Actions: {a}

4. Callees: Actuator

5. Clocks: ∅

6. Channels: {right, left}

7. Locations: l0, l1

8. Initial Location: l0

9. Final Location: l1

10. Invariant: l0 :true, l1 :true

11. Edges:

• New edge:

– Source Location: l0

– Action: a

– Channel: ∗

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l1

• New edge:

– Source Location: l0

– Action: sActuator

– Channel: right
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– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: sActuator

– Channel: left

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: fActuator

– Channel: right

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: fActuator

– Channel: left

– Clock Constraint: ∅
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– Clock Resets: ∅

– Destination Location: l0

Input: timed process automaton Brake-by-Wire creation

1. Name: Brake-by-Wire

2. Input Actions: {signal1, signal2}

3. Output Actions: {a}

4. Callees: Position

5. Clocks: ∅

6. Channels: {front, rear}

7. Locations: l0, l1

8. Initial Location: l0

9. Final Location: l1

10. Invariant: l0 :true, l1 :true

11. Edges:

• New edge:

– Source Location: l0

– Action: a

– Channel: ∗
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– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l1

• New edge:

– Source Location: l0

– Action: sPosition

– Channel: front

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: sPosition

– Channel: rear

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: fPosition

– Channel: front

– Clock Constraint: ∅
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– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: fPosition

– Channel: rear

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: signal1

– Channel: ∗

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0

• New edge:

– Source Location: l0

– Action: signal2

– Channel: ∗

– Clock Constraint: ∅

– Clock Resets: ∅

– Destination Location: l0
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Output: timed process automaton Actuator display

• Name = Actuator

• Locations = {l0 : true, l1 : true}

• initialLocation = l0

• f inalLocation = l1

• Edges = {(l0, brake!, ∗, ∅, ∅, l1)}

Output: timed process automaton Position display

• Name = Position

• Locations = {l0 : true, l1 : true}

• initialLocation = l0

• f inalLocation = l1

• Edges = {(l0, a!, ∗, ∅, ∅, l1), (l0, sActuator, right, ∅, ∅, l0), (l0, sActuator, left, ∅, ∅, l0),

(l0, fActuator, right, ∅, ∅, l0), (l0, fActuator, left, ∅, ∅, l0)}

Output: timed process automaton Brake-by-Wire display

• Name = Brake-by-Wire

• Locations = {l0 : true, l1 : true}

• initialLocation = l0

• f inalLocation = l1
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• Edges = {(l0, a!, ∗, ∅, ∅, l1), (l0, sPosition, right, ∅, ∅, l0), (l0, sPosition, left, ∅, ∅, l0),

(l0, fPosition, right, ∅, ∅, l0), (l0, fPosition, left, ∅, ∅, l0), (l0, signal1?, ∗, ∅, ∅, l0),

(l0, signal2?, ∗, ∅, ∅, l0)}

Output: a monolithic analysis model of timed process automaton Actuator

• Timed game analysis of root(P0)

– root(P0) is

∗ Identi f ier = P0

∗ tpa(P0)=Actuator

∗ channel(P0)=⊥

∗ Locations = {l0 : true, l1 : true, lP0
0 : true, BAD : true}

∗ initialLocation = l0

∗ Edges = {(l0, P0. ∗ .brake!, ∅, ∅, {xP0}, l1), (l1,⊥.fActuator!, n = 0 ∧ xP0 =

0, ∅, ∅, lP0
0 ), (l1, P0.∗.u?, n = 0 ∧ xP0 > 0, ∅, ∅, BAD)}

Output: a monolithic analysis model of timed process automaton Position

• Timed game analysis of root(P0)||standalone(P1)||standalone(P2)

– root(P0) is

∗ Identi f ier = P0

∗ tpa(P0)=Position

∗ channel(P0)=⊥

∗ Locations = {l0 : true, l1 : true, lP0
0 : true, BAD : true}
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∗ initialLocation = l0

∗ Edges = {(l0, P0.∗.a!, ∅, ∅, {xP0}, l1), (l0, P0.right.sActuator!, ∅, {n + +}, ∅, l0),

(l0, P0.left.sActuator!, ∅, {n + +}, ∅, l0), (l0, P0right.fActuator?, ∅, {n − −}, ∅, l0),

(l0, P0.left.fActuator?, ∅, {n−−}, ∅, l0), (l1,⊥.fPosition!, n = 0∧xP0 = 0, ∅, ∅, lP0
0 ), (l1, P0.∗

.u?, n = 0 ∧ xP0 > 0, ∅, ∅, BAD)}

– standalone(P1) is

∗ Identi f ier = P1

∗ tpa(P1)=Actuator

∗ channel(P1)=P0.right

∗ Locations = {l0 : true, l1 : true, lP1
0 : true, BAD : true}

∗ initialLocation = lP1
0

∗ Edges = {(l0, P1.∗.brake!, ∅, ∅, {xP1}, l1), (l1, P0.right.fActuator!, n = 0∧xP1 =

0, ∅, ∅, lP1
0 ), (lP1

0 , P0.right.sActuator?, ∅, ∅, ∅, l0), (l1, P1. ∗ .u?, n = 0 ∧ xP1 >

0, ∅, ∅, BAD)}

– standalone(P2) is

∗ Identi f ier = P2

∗ tpa(P2)=Actuator

∗ channel(P2)=P0.left

∗ Locations = {l0 : true, l1 : true, lP2
0 : true, BAD : true}

∗ initialLocation = lP2
0

∗ Edges = {(l0, P2.∗.brake!, ∅, ∅, {xP2}, l1), (l1, P0.left.fActuator!, n = 0 ∧ xP2 =

0, ∅, ∅, lP2
0 ), (lP2

0 , P0.left.sActuator?, ∅, ∅, ∅, l0), (l1, P2.∗.u?, n = 0∧xP2 > 0, ∅, ∅, BAD)}



www.manaraa.com

212

Output: a monolithic analysis model of timed process automaton Brake-by-Wire

• Timed game analysis of root(P0)||standalone(P1)||standalone(P2)||standalone(P3)||

standalone(P4)||standalone(P5)||standalone(P6)

– root(P0) is

∗ Identi f ier = P0

∗ tpa(P0)=Brake-by-Wire

∗ channel(P0)=⊥

∗ Locations = {l0 : true, l1 : true, lP0
0 : true, BAD : true}

∗ initialLocation = l0

∗ Edges = {(l0, P0.∗.a!, ∅, ∅, {xP0}, l1), (l0, P0.front.sPosition!, ∅, {n + +}, ∅, l0),

(l0, P0.rear.sPosition!, ∅, {n + +}, ∅, l0), (l0, P0front.fPosition?, ∅, {n − −}, ∅, l0),

(l0, P0.rear.fPosition?, ∅, {n−−}, ∅, l0), (l1,⊥.fBrake-by-Wire!, n = 0∧xP0 = 0, ∅, ∅, lP0
0 ), (l1, P0.∗

.u?, n = 0 ∧ xP0 > 0, ∅, ∅, BAD), (l0, P0.∗.signal1?, ∅, ∅, ∅, l0),

(l0, P0.∗.signal2?, ∅, ∅, ∅, l0)}

– standalone(P1) is

∗ Identi f ier = P1

∗ tpa(P1)=Position

∗ channel(P1)=P0.front

∗ Locations = {l0 : true, l1 : true, lP1
0 : true, BAD : true}

∗ initialLocation = lP1
0

∗ Edges = {(l0, P1.∗.a!, ∅, ∅, {xP1}, l1), (l0, P1.right.sActuator!, ∅, {n + +}, ∅, l0),

(l0, P1.left.sActuator!, ∅, {n + +}, ∅, l0), (l0, P1right.fActuator?, ∅, {n − −}, ∅, l0),



www.manaraa.com

213

(l0, P1.left.fActuator?, ∅, {n − −}, ∅, l0), (l1, P0.front.fPosition!, n = 0 ∧ xP1 =

0, ∅, ∅, lP1
0 ),

(lP1
0 , P0.front.sPosition?, ∅, ∅, ∅, l0), (l1, P1.∗.u?, n = 0 ∧ xP1 > 0, ∅, ∅, BAD)}

– standalone(P2) is

∗ Identi f ier = P2

∗ tpa(P2)=Position item channel(P2)=P0.rear

∗ Locations = {l0 : true, l1 : true, lP2
0 : true, BAD : true}

∗ initialLocation = lP2
0

∗ Edges = {(l0, P2.∗.a!, ∅, ∅, {xP2}, l1), (l0, P2.right.sActuator!, ∅, {n + +}, ∅, l0),

(l0, P2.left.sActuator!, ∅, {n + +}, ∅, l0), (l0, P2right.fActuator?, ∅, {n − −}, ∅, l0),

(l0, P2.left.fActuator?, ∅, {n−−}, ∅, l0), (l1, P0.rear.fPosition!, n = 0∧xP2 = 0, ∅, ∅, lP2
0 ), (lP2

0 , P0.rear.sPosition?, ∅, ∅, ∅, l0), (l1, P2.∗

.u?, n = 0 ∧ xP2 > 0, ∅, ∅, BAD)}

– standalone(P3) is

∗ Identi f ier = P3

∗ tpa(P3)=Actuator

∗ channel(P3)=P1.right

∗ Locations = {l0 : true, l1 : true, lP3
0 : true, BAD : true}

∗ initialLocation = lP3
0

∗ Edges = {(l0, P3.∗.brake!, ∅, ∅, {xP3}, l1), (l1, P1.right.fActuator!, n = 0∧xP3 =

0, ∅, ∅, lP3
0 ), (lP3

0 , P1.right.sActuator?, ∅, ∅, ∅, l0), (l1, P3. ∗ .u?, n = 0 ∧ xP3 >

0, ∅, ∅, BAD)}

– standalone(P4) is

∗ Identi f ier = P4
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∗ tpa(P4)=Actuator

∗ channel(P4)=P1.left

∗ Locations = {l0 : true, l1 : true, lP4
0 : true, BAD : true}

∗ initialLocation = lP4
0

∗ Edges = {(l0, P4.∗.brake!, ∅, ∅, {xP4}, l1), (l1, P1.left.fActuator!, n = 0 ∧ xP4 =

0, ∅, ∅, lP4
0 ), (lP4

0 , P1.left.sActuator?, ∅, ∅, ∅, l0), (l1, P4.∗.u?, n = 0∧xP4 > 0, ∅, ∅, BAD)}

– standalone(P5) is

∗ Identi f ier = P5

∗ tpa(P5)=Actuator

∗ channel(P5)=P2.right

∗ Locations = {l0 : true, l1 : true, lP5
0 : true, BAD : true}

∗ initialLocation = lP5
0

∗ Edges = {(l0, P5.∗.brake!, ∅, ∅, {xP5}, l1), (l1, P2.right.fActuator!, n = 0∧xP5 =

0, ∅, ∅, lP5
0 ), (lP5

0 , P2.right.sActuator?, ∅, ∅, ∅, l0), (l1, P5. ∗ .u?, n = 0 ∧ xP5 >

0, ∅, ∅, BAD)}

– standalone(P6) is

∗ Identi f ier = P6

∗ tpa(P6)=Actuator

∗ channel(P6)=P2.left

∗ Locations = {l0 : true, l1 : true, lP6
0 : true, BAD : true}

∗ initialLocation = lP6
0

∗ Edges = {(l0, P6.∗.brake!, ∅, ∅, {xP6}, l1), (l1, P2.left.fActuator!, n = 0 ∧ xP6 =

0, ∅, ∅, lP6
0 ), (lP6

0 , P2.left.sActuator?, ∅, ∅, ∅, l0), (l1, P6.∗.u?, n = 0∧xP6 > 0, ∅, ∅, BAD)}
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Output: a compositional analysis model of timed process automaton Actuator

• Timed game analysis of root(P0)

– root(P0) is

∗ Identi f ier = P0

∗ tpa(P0)=Actuator

∗ channel(P0)=⊥

∗ Locations = {l0 : true, l1 : true, lP0
0 : true, BAD : true}

∗ initialLocation = l0

∗ Edges = {(l0, P0. ∗ .brake!, ∅, ∅, {xP0}, l1), (l1,⊥.fActuator!, n = 0 ∧ xP0 =

0, ∅, ∅, lP0
0 ), (l1, P0.∗.u?, n = 0 ∧ xP0 > 0, ∅, ∅, BAD)}

Output: a compositional analysis model of timed process automaton Position

• Timed game analysis of root(P0)||duration(P1)||duration(P2)

– root(P0) is

∗ Identi f ier = P0

∗ tpa(P0)=Position

∗ channel(P0)=⊥

∗ Locations = {l0 : true, l1 : true, lP0
0 : true, BAD : true}

∗ initialLocation = l0

∗ Edges = {(l0, P0.∗.a!, ∅, ∅, {xP0}, l1), (l0, P0.right.sActuator!, ∅, {n + +}, ∅, l0),

(l0, P0.left.sActuator!, ∅, {n + +}, ∅, l0), (l0, P0right.fActuator?, ∅, {n − −}, ∅, l0),

(l0, P0.left.fActuator?, ∅, {n−−}, ∅, l0), (l1,⊥.fPosition!, n = 0∧xP0 = 0, ∅, ∅, lP0
0 ), (l1, P0.∗

.u?, n = 0 ∧ xP0 > 0, ∅, ∅, BAD)}
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– duration(P1) is

∗ Identi f ier = P1

∗ tpa(P1)=Actuator

∗ channel(P1)=P0.right

∗ The WCET (input from the game analyzer)=Unknown

∗ Locations = {lP1
0 : true, lP1

1 : true}

∗ initialLocation = lP1
0

∗ Edges = {(lP1
1 , P0.right.fActuator!, ∅, ∅, ∅, l

P1
0 ), (lP1

0 , P0.right.sActuator?, ∅, ∅, ∅, l
P1
1 )}

– duration(P2) is

∗ Identi f ier = P2

∗ tpa(P2)=Actuator

∗ channel(P2)=P0.left

∗ The WCET (input from the game analyzer)=Unknown

∗ Locations = {lP2
0 : true, lP2

1 : true}

∗ initialLocation = lP2
0

∗ Edges = {(lP2
1 , P0.left.fActuator!, ∅, ∅, ∅, l

P2
0 ), (lP2

0 , P0.left.sActuator?, ∅, ∅, ∅, l
P2
1 )}

Output: a compositional analysis model of timed process automaton Brake-by-Wire

• Timed game analysis of root(P0)||duration(P1)||duration(P2)

– root(P0) is

∗ Identi f ier = P0

∗ tpa(P0)=Brake-by-Wire
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∗ channel(P0)=⊥

∗ Locations = {l0 : true, l1 : true, lP0
0 : true, BAD : true}

∗ initialLocation = l0

∗ Edges = {(l0, P0.∗.a!, ∅, ∅, {xP0}, l1), (l0, P0.front.sPosition!, ∅, {n + +}, ∅, l0),

(l0, P0.rear.sPosition!, ∅, {n + +}, ∅, l0), (l0, P0front.fPosition?, ∅, {n − −}, ∅, l0),

(l0, P0.rear.fPosition?, ∅, {n−−}, ∅, l0), (l1,⊥.fBrake-by-Wire!, n = 0∧xP0 = 0, ∅, ∅, lP0
0 ), (l1, P0.∗

.u?, n = 0 ∧ xP0 > 0, ∅, ∅, BAD), (l0, P0.∗.signal1?, ∅, ∅, ∅, l0),

(l0, P0.∗.signal2?, ∅, ∅, ∅, l0)}

– duration(P1) is

∗ Identi f ier = P1

∗ tpa(P1)=Position

∗ channel(P1)=P0.front

∗ The WCET (input from the game analyzer)=Unknown

∗ Locations = {lP1
0 : true, lP1

1 : true}

∗ initialLocation = lP1
0

∗ Edges = {(lP1
1 , P0.front.fPosition!, ∅, ∅, ∅, lP1

0 ), (lP1
0 , P0.front.sPosition?, ∅, ∅, ∅, lP1

1 )}

– duration(P2) is

∗ Identi f ier = P2

∗ tpa(P2)=Position

∗ channel(P2)=P0.rear

∗ The WCET (input from the game analyzer)=Unknown

∗ Locations = {lP2
0 : true, lP2

1 : true}

∗ initialLocation = lP2
0
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∗ Edges = {(lP2
1 , P0.rear.fPosition!, ∅, ∅, ∅, lP2

0 ), (lP2
0 , P0.rear.sPosition?, ∅, ∅, ∅, lP2

1 )}

Name Type Purpose
x Clock To record time passed since S was initialized
y Clock To record time passed since W was initialized
z Clock To record time passed since D was initialized
aS1 Boolean To record whether core1 is currently assigned (1) to execute S or not (0)
aW1 Boolean To record whether core1 is currently assigned (1) to execute W or not (0)
aD1 Boolean To record whether core1 is currently assigned (1) to execute D or not (0)
aS2 Boolean To record whether core2 is currently assigned (1) to execute S or not (0)
aW2 Boolean To record whether core2 is currently assigned (1) to execute W or not (0)
aD2 Boolean To record whether core2 is currently assigned (1) to execute D or not (0)
aS3 Boolean To record whether core3 is currently assigned (1) to execute S or not (0)
aW3 Boolean To record whether core3 is currently assigned (1) to execute W or not (0)
aD3 Boolean To record whether core3 is currently assigned (1) to execute D or not (0)
iS Boolean To record whether S is initialized (1) or yet to initialize (0)
iW Boolean To record whether W is initialized (1) or yet to initialize (0)
iD Boolean To record whether D is initialized (1) or yet to initialize (0)
uW Boolean To record whether an update in W is performed (1) or not (0)
uD Boolean To record whether an update in D is performed (1) or not (0)
L1 Integer To record the current worst possible loads on core1

L2 Integer To record the current worst possible loads on core2

L3 Integer To record the current worst possible loads on core3

vS Integer To record the current value in the speedometer
sD Integer To record the current door state
F Integer To record the current total number of core failures

Table D.1: Variables in the monolithic model

Figure D.2: Function start in the monolithic and compositional models
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Name Type Purpose
CFL Constant To store CFL
pS Constant To store release period of S
pW Constant To store release period of W
pD Constant To store release period of D
wS Constant To store the WCET of S
wW Constant To store the WCET of W
wD Constant To store the WCET of D
bS Constant To store the BCET of S
bW Constant To store the BCET of W
bD Constant To store the BCET of D
lS1 Constant To store the worst-case load of S on core1

lS2 Constant To store the worst-case load of S on core2

lS3 Constant To store the worst-case load of S on core3

lW1 Constant To store the worst-case load of W on core1

lW2 Constant To store the worst-case load of W on core2

lW3 Constant To store the worst-case load of W on core3

lD1 Constant To store the worst-case load of D on core1

lD2 Constant To store the worst-case load of D on core2

lD3 Constant To store the worst-case load of D on core3

Limit Constant To store the load limit of every core

Table D.2: Constants in the monolithic model

Name From To Purpose
sS service S To start S
sW service W To start W
sD service D To start D
fS service S To finish S
fW service W To finish W
fD service D To finish D

Table D.3: Actions in the monolithic model
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Name Type Purpose
x Clock To record time passed since S was initialized
y Clock To record time passed since W was initialized
z Clock To record time passed since D was initialized
aS1 Boolean To record whether core1 is currently assigned (1) to execute S or not (0)
aW1 Boolean To record whether core1 is currently assigned (1) to execute W or not (0)
aD1 Boolean To record whether core1 is currently assigned (1) to execute D or not (0)
aS2 Boolean To record whether core2 is currently assigned (1) to execute S or not (0)
aW2 Boolean To record whether core2 is currently assigned (1) to execute W or not (0)
aD2 Boolean To record whether core2 is currently assigned (1) to execute D or not (0)
aS3 Boolean To record whether core3 is currently assigned (1) to execute S or not (0)
aW3 Boolean To record whether core3 is currently assigned (1) to execute W or not (0)
aD3 Boolean To record whether core3 is currently assigned (1) to execute D or not (0)
iS Boolean To record whether S is initialized (1) or yet to initialize (0)
iW Boolean To record whether W is initialized (1) or yet to initialize (0)
iD Boolean To record whether D is initialized (1) or yet to initialize (0)
L1 Integer To record the current worst possible loads on core1

L2 Integer To record the current worst possible loads on core2

L3 Integer To record the current worst possible loads on core3

F Integer To record the current total number of core failures

Table D.4: Variables in the compositional model

Figure D.3: Function finish in the monolithic and compositional models
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Name Type Purpose
CFL Constant To store CFL
pS Constant To store release period of S
pW Constant To store release period of W
pD Constant To store release period of D
wS Constant To store the WCET of S
wW Constant To store the WCET of W
wD Constant To store the WCET of D
bS Constant To store the BCET of S
bW Constant To store the BCET of W
bD Constant To store the BCET of D
lS1 Constant To store the worst-case load of S on core1

lS2 Constant To store the worst-case load of S on core2

lS3 Constant To store the worst-case load of S on core3

lW1 Constant To store the worst-case load of W on core1

lW2 Constant To store the worst-case load of W on core2

lW3 Constant To store the worst-case load of W on core3

lD1 Constant To store the worst-case load of D on core1

lD2 Constant To store the worst-case load of D on core2

lD3 Constant To store the worst-case load of D on core3

Limit Constant To store the load limit of every core

Table D.5: Constants in the compositional model
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Figure D.4: Function reassign in the monolithic and compositional models


